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a b s t r a c t

This paper exploits screw theory expressed via unit dual quaternion representation and its algebra to
formulate both the forward (position + velocity) kinematics and pose control of an n-dof robot arm in
an efficient way. Efficiency is in less computer memory usage, in fast computation of the equations, in
singularity-free representation of task space, in robustness to numerical errors, and in compactness of
the representations. The formulation is simple, intuitive and straightforward to implement. We validated
this formulation experimentally on a 7 dof robot arm.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Unit dual quaternion (UDQ) representation of a pose (posi-
tion + orientation) has been receiving a lot of attention from the
robotics community both for kinematic modeling and control pur-
poses [1–8] recently, although its storage and computational effi-
ciencies over the homogeneous transformationmatrix (HTM) have
been known since more than two decades [9,10]. The study in [11]
shows the superior performance of UDQ over HTM in kinematic
modeling of an n-dof robot arm, and recently in [12] for the propor-
tional control design. Other appealing advantages of UDQ are sin-
gularity free representation of the Euclidean space, robustness to
numerical errors and compactness of the representation. UDQ has
also been effectively used in computer graphics [13], in computer-
aided design [14], in computer vision [15], in navigation [16] and
so on.

The most well-known method for robot kinematics is based
on the Denavit and Hartenberg (DH) notation [17] and the
homogeneous transformation of the points through HTM [18]. So
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far all the existing works [4–6,11] onmodeling of robot kinematics
with UDQ continue to follow DH approach. We think that DH
wastes some capacity of UDQ, since DH’s first design is based on point
transformations with HTM.

In this paper, for kinematic modeling, we followed the screw
theory approach based on line transformations presented in [19],
and we adapted it to unit dual quaternion representation and
its algebra, since UDQ has been found as the most compact
and efficient way of expressing screw displacement [9,10]. For
kinematic control purposes, we used the logarithm of an error
unit dual quaternion as a generalized proportional control law
which is first introduced in [1] and we also analyzed its global
stability in terms of the screw parameters’ value ranges. Definition
of the pose error between the two pose unit dual quaternions
should be done through the multiplication operator of the dual
quaternion algebra rather than the subtraction operator as it is
done in [5,6] which is not correct (although the stability of the
control law is proven). Some recent works [7,8] exploited UDQ for
the design of robust control laws and for the flexible modeling of
the cooperative task spaces by passing toℜ

8 manifold to obtain the
lacking commutative property back through Hamilton operators
(8 × 8 matrices), however leaving the computational advantages
of UDQ algebra away. One might also think to use Rodrigues’
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Table 1
Cost requirements for different representations of a rigid-body transformation.

Representation Storage Multiplications & additions

HTM 12 64× 48+
UDQwH 8 64× 56+
TAA 7 43× 26+
UDQ 8 48× 40+

efficient rotation formula through a rigid-body pose represented
by a 3D translation vector and a 4D rotation vector with Rodrigues’
axis–angle parameters. We here name this representation as
TAA. We remark that TAA has a singularity. Whenever the
resulting angle in TAA is zero, the axis part of the rotation
representation is undetermined [20]. Table 1 lists the storage and
computational cost requirements for a rigid-body transformation
under 4 different representations: homogeneous transformation
matrices (HTM), unit dual quaternions with Hamilton operators
(UDQwH), pose with Rodrigues’ parameters (TAA) and unit dual
quaternions (UDQ). Although TAA needs lesser storage, we note
that it requires 7 trigonometric functions and 1 square-root
function computationsmore on top ofwhat is listed in Table 1. TAA
also lacks an efficient algebra.

This paper combines efficiently all the advantages of screw
theory based on UDQ and its algebra for kinematic modeling and
pose control of a robot arm and experimentally validates it. Each
relevant work, in the reviewed literature, somehow misses one
point in combining all these together as it is discussed above. We
then list the contributions of this paper as follows:

• All the advantages (i.e., compactness, storage, computational
efficiency, etc.) of unit dual quaternion representation and its
algebra are exploited.

• The forward position kinematics (FPK), for the first time, is
written in the dual spacewith the product of exponentials (POE)
formula of screw theory by replacing the matrix exponentials
with the unit dual quaternions. Everything is expressed in one
single reference frame (i.e., robot home frame). This makes FPK
simpler and more intuitive. Consequence of this formulation is
that the computation of the robot Jacobian is straightforward
and fast.

• The kinematic modeling and the pose control problems of
a robot arm are solved compactly with fewer number of
arithmetic operations and storage requirements than many
of the existing relevant approaches proposed in the robotics
literature.

• Correctness of the proposed kinematic modeling and control
approaches is validated experimentally on a 7 dof robot arm.

• All the variables and equations are explained clearly and
without any ambiguity. That is to say, for example, a pose
variable is precisely stated with in which frame it is defined
and with respect to which frame it is expressed. The paper
is also self-sufficient such that one can implement everything
presented herewithout looking for any other relevant reference
or book.

The rest of the paper goes on as follows: Section 2 explains the
pose (position + orientation) representation of the end-effector,
the forward position and velocity kinematics of the robot; Section 3
first defines the pose error, later it proposes a control law to
regulate this pose error, and finally it analyzes the stability of
the proposed control law; Section 4 validates experimentally the
proposed kinematicmodeling and control theory on the 7 dof Kuka
robot arm; finally Section 5 concludes the paper.

We also note that, for better understanding of the paper, the
reader can look up to Appendix for further information about the
quaternions, dual numbers, and dual quaternions.
2. Kinematic modeling

2.1. Pose representation

We represent the position and orientation of the end-effector
of a robot arm with a unit dual quaternion [13,15,21]:

x̂ = exp


θ̂

2
ŝ


= cos


θ̂

2


+ ŝ sin


θ̂

2


(1)

where θ̂ ∈ D and ŝ ∈ D3×1 are respectively the dual angle and the
unit dual vector of a directed 3D line:

θ̂ = θ + ε d, ŝ = ℓ + ε m, ε2
= 0, ε ≠ 0. (2)

Above, {θ, d, ℓ, m} are the screw displacement parameters. θ is
a rotation angle around the screw axis, d is a translation along the
same screwaxis, ℓ is the unit direction vector of this screwaxis, and
m is the moment vector of this screw axis computed with respect
to the origin of the home frame of the robot arm. Eq. (1) can be
rewritten in terms of a quaternion pair as follows:

x̂ = qR + ε qT (3)

where qR is a unit quaternion for rotation and qT is a quaternion
for translation. These rotation and translation quaternions can be
written with the known screw displacement parameters [15] as
below:
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This representation is compact, fast, stable and singularity free
[9,10].

2.2. Forward position kinematics

We note here the current joint values of a robot arm with

θ̂ = [θ̂1, θ̂2, θ̂3, . . . , θ̂n]
T

∈ Dn×1

and its home configuration with θ̂
0

∈ Dn×1. Then, for simplicity

of calculations, first we move the arm to θ̂
0
and then we place the

arm home frame a0 onto the arm end-effector frame a. Thus, the
relative pose between the arm home frame a0 and the arm end-
effector frame a is an identity unit dual quaternion, 1̂, while θ̂ = θ̂

0
.

Let δ̂i be a unit dual quaternion which either rotates or translates
(or both1) the end-effector frame a about the ith joint screw axis
while the rest of joints are locked.

In otherwords, each of these unit dual quaternions δ̂i represents
the relative displacement of the end-effector frame a from the
ith joint home configuration θ̂i0 . Then, for any deviation from the
home configuration, the end-effector pose of the robot arm can
be calculated by multiplying all these unit dual quaternions of
successive joint displacements:

a0 x̂a0 a =
a0 δ̂1

a0 δ̂2
a0 δ̂3 . . . a0 δ̂n. (6)

The resultant unit dual quaternion, a0 x̂a0 a, represents the newpose
of the arm end-effector frame awith respect to a0 expressed in a0.

The order of multiplication of unit dual quaternions is
important. It should be written sequentially from right to left

1 Two joints share the same axis for rotation and translation.
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Fig. 1. A simple illustration of how forward position kinematics is applied on a 3 dof robot arm.
starting from the last joint (i.e., the closest one to the end-effector,
e.g., here δ̂n) toward the first joint (i.e., the closest one to the robot
base, e.g., here δ̂1).

From now on in this section, unless otherwise stated, all the
variables are expressed in the robot home frame a0.

In order to compute (6), we express a unit dual quaternion δ̂i as
follows:

δ̂i = exp


θ̂i

2
ŝi0


(7)

where the dual angle is a relative joint displacement with respect
to the home joint position:

θ̂i = 1θi + ε 1di. (8)

If a joint is revolute, then θ̂i = 1θi. If a joint is prismatic, then
θ̂i = ε 1di. The unit dual vector ŝi0 represents the joint screw
axis calculated at home configuration in terms of the Plücker line
coordinates:
ŝi0 = ℓi0 + ε mi0 (9)
with ℓi0 the unit vector showing the direction of the joint axis, and
with mi0 the moment vector of this joint axis about the origin of
the home frame:
mi0 = pi0 × ℓi0 . (10)
Here, pi0 is a position vector from the origin of the home
frame to any point lying on the joint axis (e.g., calculable joint
center position at home configuration). Thus, δ̂i is a function of
measurable relative joint value θ̂i and the known {pi0 , ℓi0} at home
configuration. The home configuration θ̂

0
can be chosen such that

pi0 and ℓi0 are simple to write. Fig. 1 illustrates how forward
position kinematics is applied gradually on a 3 dof robot arm. In
Fig. 1, the left most robot’s shape is chosen as home configuration,
and we want to find the right most robot’s end-effector pose with
respect to the robot’s end-effector pose at home configuration.
To do so, we first compute joint displacements and then apply
the unit dual quaternion transformations of these displacements
successively starting from the last joint toward the first joint.
Cost analysis. An n-dof robot arm, which uses (6) to compute its
forward position kinematics, needs:

Cost(n) = [(n − 1) , (n − 1) , n]

48×
40+
8 f


(11)

multiplication and addition operations and floating-point memory
units. For example, a 6-dof robot arm needs 240× and 200+ op-
erations and 48 f memory units to compute its forward position
kinematics.

If we had used Denavit–Hartenberg approach to compute
the forward position kinematics of an n-dof robot arm by
means of unit dual quaternions, then we would need at least
3 n [48×, 40+, 8 f ]T moremultiplication and addition operations
and floating-point memory units than (11).
2.3. Forward velocity kinematics

Robot arm Jacobian relates velocities of the joint motions to the
velocity of the end-effector pose:

a0 ξ̂a0 a =
a0 Ĵ ˙̂

θ (12)

where a0 ξ̂a0 a = ω + ε υ ∈ D3×1 is a dual space velocity twist of
the end-effector frame awith respect to home frame a0 expressed
in the robot home frame a0. Above υ is the translational velocity
vector andω is the rotational velocity vector. Thematrix a0 Ĵ ∈ D3× n

is the dual space Jacobian of the robot arm expressed in the home
frame a0. The dual space Jacobian a0 Ĵ is nothing else than the unit
dual vectors of the joint screw axes:

a0 Ĵ =
a0 ŝ1 a0 ŝ2 a0 ŝ3 · · ·

a0 ŝn


(13)

where a unit dual vector a0 ŝi expressed in the robot home frame a0
can be computed from its knownvalues a0 ŝi0 at home configuration
given in (9) as:

a0 ŝi =
a0 δ̂a0 (i−1)

a0 ŝi0
a0 δ̂

∗

a0 (i−1) (14)

where a0 δ̂a0 (i−1) represents the total displacement effect of the
previous i − 1 joints on the ith joint screw axis:

a0 δ̂a0 (i−1) =
a0 δ̂1

a0 δ̂2 . . . a0 δ̂(i−1). (15)

In (14) the operator (·)∗ represents the classical quaternion
conjugate of a associated dual quaternion. It is used either to
transform a line [15] or to compute the inverse of a pose unit dual
quaternion. Note also that in (14), if i = 1 then a0 ŝ1 =

a0 ŝ10 .
Cost analysis. An n-dof robot arm, which uses (13) to compute its
Jacobian through (14), needs:

Cost(n) = 2 (n − 1)

48×
40+


(16)

multiplication and addition operations. For example, a 6-dof robot
arm needs 480× and 400+ operations to compute its Jacobian.
Matrix–vector form representation. For the computation of the
inverse velocity kinematics, one can rewrite (12) in terms of
the real numbers rather than the dual numbers, and put it in
matrix–vector form as below:

a0ξ
a0 a

=


ω
υ


=


L 0
M L

 
θ̇

ḋ


(17)

where L ∈ ℜ
3× n, M ∈ ℜ

3× n, θ ∈ ℜ
n× 1 and d ∈ ℜ

n× 1 are as
follows:

L =

ℓ1 ℓ2 ℓ3 · · · ℓn


,

M =

m1 m2 m3 · · · mn

 (18)

θ =

θ1 θ2 θ3 · · · θn

T
,

d =

d1 d2 d3 · · · dn

T
.

(19)
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Fig. 2. Initial configuration of the robot arm and the bottle (left). Desired reach pose of the robot arm to grasp the bottle (middle). The desired corrected posture of the bottle
after grasping and leaving it onto the table (right).
Notice that for a 6-dof robot arm which is composed of only
revolute joints, Eq. (17) gives the well-known structure of a robot
Jacobian:

a0ξ
a0 a

=


ω
υ


=


ℓ1 ℓ2 · · · ℓ6
m1 m2 · · · m6

 
θ̇1
θ̇2
...

θ̇6

 . (20)

One can now exploit the linear algebra algorithms on (17) to
solve for the joint motions.

3. Kinematic control

3.1. End-effector pose error

We define the error unit dual quaternion, ê, as the difference
between the current end-effector pose at a and the desired end-
effector pose at ad in the home frame a0:

ê =
a0 x̂a0 a

a0 x̂∗

a0 ad (21)

where a0 x̂a0 a is the current end-effector pose and a0 x̂∗
a0 ad is the

inverse of the desired end-effector pose a0 x̂a0 ad which is obtained
through the classical quaternion conjugate of a dual quaternion.

3.2. Control law

We define the Cartesian control law a0 ξ̂a0 a in the dual space in
terms of the logarithm of the error unit dual quaternion:

a0 ξ̂a0 a = −λ 2 ln(ê) (22)

where λ is a positive scalar control gain. The control law (22)
has a global exponential convergence behavior. The proof of this
behavior can be followed through the analysis of Section 3.3.
Furthermore one can find a different proof in [1] for the same
control law for the case of free rigid-bodies.

In the rest of this section, for the simplicity of equations, wewill
drop the super and subscripts of variables (e.g., a0 ξ̂a0 a ≡ ξ̂).

Exploiting (1), we can rewrite (22) as:

ξ̂ = −λ θ̂ ŝ = −λ θ ℓ − ε λ (θ m + d ℓ) (23)

where {θ, d, ℓ, m} are now the screw displacement parameters
obtained from the error unit dual quaternion ê. In the next
subsection, we analyze the stability of the proposed control law.
3.3. Stability analysis

In order to analyze the stability of the proposed control law, we
write the following positive definite Lyapunov candidate function:

V = ê ◦ ê > 0 (24)

where ‘‘◦’’ is a bi-operator for vector dot product between
the elements of the associated left and right dual quaternions.
Afterward we differentiate this Lyapunov candidate function V
with respect to time so that we can check its negative definiteness.
This yields:

V̇ = 2 ê ◦ ˙̂e (25)

where the derivative of the error unit dual quaternion, ˙̂e, can be
rewritten in terms of the velocity twist (i.e., Cartesian control law)
expressed in the robot home frame (so-called spatial frame) as
follows:

˙̂e =
1
2

ξ̂
∧
ê. (26)

Substituting (26) into (25) yields:

V̇ = ê ◦ (ξ̂
∧
ê) (27)

where ξ̂
∧

= (0, ω) + ε (0, υ) is the Cartesian control law written
in the dual quaternion space by augmenting its real and dual parts
with zero scalars. Expanding (27) in terms of the screw parameters
and then simplifying it, we obtain the following expression:

V̇ = −λ
1
2


d2 + ∥m∥

2 θ sin(θ)

. (28)

Afterward by analyzing (28), we conclude that

If − π ≤ θ ≤ π then V̇ < 0. (29)

Consequently if (29) is valid and the robot arm Jacobian (13) is non-
singular, then the control law is globally exponentially stable.

4. Experiments

The presented formulation is validated on a Kuka LWR IV
seven dof robot arm which is equipped with a Shadow dexterous
hand [22]. In the experiment, we first reach to grasp a bottle lying
on a table from a known pose, then after grasping we correct the
posture of the bottle and put it back. In Fig. 2 left image shows
the initial configuration the Kuka robot arm plus the Shadow
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Fig. 3. Evolutions of the unit dual quaternion error (left) and the control law (right) vs. time while reaching to grasp the bottle.
Fig. 4. Evolutions of the unit dual quaternion error (left) and the control law (right) vs. time while correcting the posture of the bottle to put it back.
dexterous hand and the bottle lying on the table. In Fig. 2 middle
image shows the desired reach pose of the robot arm, and right
image shows the desired corrected posture of the bottle.

Fig. 3 depicts the evolutions of the unit dual quaternion error
and the control law versus time while moving to the desired
reach pose shown in the middle image of Fig. 2. Fig. 4 depicts
the evolutions of the unit dual quaternion error and the control
law versus time while correcting the posture of the bottle toward
the desired posture shown in the right image of Fig. 2. Finally,
Fig. 5 shows the traces of the Cartesian poses of the end-effector
registered during the whole manipulation task. One can observe
from Figs. 3 and 4 that both reaching to bottle and correcting its
posture tasks are successfully realized.

5. Conclusions

This paper used unit dual quaternions to model the kinematics
and then to control the pose of a robot arm. Modeling is compact
and fast. Therefore, computation of the control law is fast. Besides,
the task space is singularity free. This formulation provides an
important advantage if one uses it to model and control a robotic
system which has many degrees of freedom, such as a humanoid
robot.

This work may provide a basis for future research on dynamic
modeling and control of robot arms in amore compact and efficient
way than the existing methods using unit dual quaternions.
Appendix

A.1. Quaternions

Irish mathematician Sir William Hamilton introduced the
quaternion in 1843 [23] as a geometrical operator to map two
vectors to each other in 3D space. Bymapping, hemeans reflection,
rotation and scaling. Majority of applications use pure rotations.
This restricts the quaternions to those with unit magnitude
and that use only multiplication operation to combine different
rotations. The quaternion set H can be seen as a four-dimensional
pseudo vector space over the real numbersℜ

4. A quaternion q ∈ H
can be represented with a real scalar part s ∈ ℜ and an imaginary
vector part v ∈ ℜ

3:

q , (s, v), v = [vx, vy, vz]
T . (A.1)

Two quaternions can be multiplied with each other as follows:
q1 q2 = (s1 s2 − v1 · v2, s1 v2 + s2 v1 + v1 × v2) (A.2)
where ‘‘·’’ is the vector dot product and ‘‘×’’ is the vector cross
product. The quaternion multiplication is associative but not
commutative.
Conjugate and norm. Conjugate q∗ and norm ∥q∥ of a quaternion
are given as below:

q∗ , (s, −v) (A.3)
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Fig. 5. Cartesian pose trajectory of the end-effector while reaching to grasp
(red) and then correcting the posture (green) of the bottle to put it back. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

∥q∥ =

q q∗ =


q∗ q =


s2 + v · v. (A.4)

If ∥q∥ = 1, then q is a unit quaternion and as well as its inverse is
q−1

= q∗.

Rotation. One can write a 3D rotation, expressed by an angle θ
around a unit vector ℓ, in terms of a unit quaternion as follows:

qR , (cos(θ/2), sin(θ/2) ℓ). (A.5)

In order to rotate an imaginary quaternion (i.e., a quaternion with
zero scalar part) p∧ = (0, v) representing a vector in 3D space,
one should just pre and post multiply p∧ with the unit quaternion
qR and its conjugate, respectively:

p′

∧
= qR p∧ q∗

R
(A.6)

where p′
∧
is the rotated imaginary quaternion of p∧.

A.2. Dual numbers

English mathematician Sir William Clifford introduced the set
of dual numbers D and its algebra in 1873 [24]. He defined a dual
number as follows:

ẑ = a + ε b, ε2
= 0, ε ≠ 0 (A.7)

where a is the real part and b is the dual part. Geometrically a dual
number can represent a 2D position vector in the dual plane. The
above expression can be rewritten as follows:

ẑ = r (1 + ε τ) (A.8)

where the modulus r = a and the argument τ = b/a for a ≠ 0.
The multiplication operation for dual numbers, once more, yields
the flavor of geometric mapping:

ẑ1 ẑ2 = r (1 + ε τ) (a + ε b) = r (a + ε (b + a τ)) (A.9)

which scales and shears. If multiplying dual number ẑ1 is unit (i.e.,
r = 1), then the mapping is pure shearing on the 2D position
vector expressed by ẑ2. Dual numbers can also express 2D planar
lines and their arbitrary motions by means of polar coordinate
parameters [25].

A.3. Plücker lines as unit dual vectors

German mathematician Study defined the dual angle notation,
θ̂ = θ+ε d, which relates an arbitrary 3D spatial line s to a given 3D
spatial line s0 by a rotation θ about a unique axis (common normal
of the two spatial lines) and with a translation d along the same
axis [26]. See Fig. A.6 (left). Thus, 3-tuple of dual angles uniquely
expresses a 3D spatial line with respect to axes of the reference
Cartesian frame. This 3-tuple of dual angles yields a unit dual vector
representation by means of Plücker coordinates [27]:

ŝ = ℓ + ε m (A.10)

where real part ℓ is the unit direction vector of the line s, and dual
part m = (p × ℓ) is the moment of the line about the origin O
and it is orthogonal to ℓ. The p is an arbitrary point lying on the
line. See Fig. A.6 (right). The inner product of two unit dual vectors
representing two skew lines (e.g., ŝ0 and ŝ) yields the cosine of a
dual angle (e.g., cos(θ̂)) which relates one line to the other.

A.4. Dual quaternions

A unit dual quaternion can express either the pose (both
orientation and position) or the displacement of a rigid body in 3D
Cartesian space. The rigid body can be displaced by multiplying
its pose unit dual quaternion with the displacement unit dual
quaternion. A dual quaternion is noted as a dual number with
quaternion components:

x̂ = p + ε q (A.11)

where p , (sp, vp) and q , (sq, vq) are quaternions.
Multiplication. The multiplication of two dual quaternions yields
the following equation:

x̂1 x̂2 = p1 p2 + ε (p1 q2 + q1 p2). (A.12)

Conjugates. There are three different conjugates of a dual quater-
nion:
1. Classical quaternion conjugate. This is used for 3D line transfor-

mation.

x̂∗
= p∗

+ ε q∗. (A.13)

2. Dual conjugate

¯̂x = p − ε q. (A.14)

3. Combined conjugate. This is used for 3D point transformation.

¯̂x
∗

= p∗
− ε q∗. (A.15)

Norm. The norm of a dual quaternion is given as:

∥x̂∥ =

√

x̂ x̂∗ =

√

x̂∗ x̂ (A.16)

∥x̂∥ =


(s2p + vp · vp, 0) + ε 2 (sp sq + vp · vq, 0). (A.17)

If

s2p + vp · vp = 1, 2 (sp sq + vp · vq) = 0 (A.18)

then ∥x̂∥ = 1. That is to say x̂ is a unit dual quaternion and its
inverse is x̂−1

= x̂∗.
Displacement. One can construct a unit dual quaternion to express
a displacement as follows:

x̂ = qR


1 + ε

t∧
2


or x̂ =


1 + ε

t∧
2


qR (A.19)
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Fig. A.6. Lines—(Left): A dual angle expresses the relative pose of a line with respect to another line. (Right): Geometry of a Plücker line.
where qR is a unit quaternion representing a rotation as shown in
(A.5), 1 denotes an identity quaternion: (1, 0), and t∧ = (0, t)
is the quaternion describing the translation with vector t. Left
equation in (A.19) (resp. right equation) first translates then rotates
(resp. rotates then translates) a 3D geometric feature (e.g., point,
line). A unit dual quaternion that only rotates (x̂R ) or that only
translates (x̂T ) can then be written from (A.19) as follows:

x̂R = qR + ε (0, 0), x̂T = (1, 0) + ε
t∧
2

(A.20)

and consequently the identity unit dual quaternion is 1̂ = (1, 0)+

ε (0, 0). The relative displacement x̂e between two rigid bodies can
be calculated by multiplying the pose unit dual quaternion of first
rigid body with the inverse (or conjugate) of the pose unit dual
quaternion of second rigid body:

x̂e = x̂1 x̂∗

2 (A.21)

or the other way around.

A.5. From a finite twist to a unit dual quaternion

Let ζ be a finite twist in se(3), then it can be explicitly written
with a finite rotation and a finite translation about a geometric
screw line as follows [28]:

υ
ω


= θ


m
ℓ


+ d


ℓ
0


. (A.22)

We can then extract the screw parameters {θ, ℓ, d, m} of a
displacement from this finite twist as below:

θ = ∥ω∥, ℓ =
ω

θ
, d = ℓT υ, m =

1
θ

(υ − d ℓ). (A.23)

Afterward, it is straightforward to write the corresponding unit
dual quaternion representation, see (3) and (4).

A.6. From a unit dual quaternion to screw parameters

Let x̂ = qR + ε qT be a unit dual quaternion with qR , (sR , vR)
and qT , (sT , vT ). We can then compute the rotation angle θ as
follows:

θ = 2 arccos(sR). (A.24)

Afterward, we have the following two cases to compute the rest of
the screw parameters:
Case when 0 < θ < 2π and θ ≠ 0.

d = −2
sT

sin(θ/2)
(A.25)

ℓ =
vR

sin(θ/2)
(A.26)

m =


vT − sR

d
2

ℓ


1

sin(θ/2)
. (A.27)
Case when θ = 0.

d = 2 ∥vT ∥, ℓ = 2 vT /d, m = [0, 0, 0]T . (A.28)
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