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As-Rigid-As-Possible Shape Servoing
Mohammadreza Shetab-Bushehri1, Miguel Aranda1, Youcef Mezouar1 and Erol Ozgur1

Abstract—Shape servoing is the problem of controlling the
shape of a deformable object via robotic manipulation, exploiting
sensory feedback. In many shape servoing scenarios of practical
interest, the object has a natural tendency to preserve local
rigidity. Motivated by this observation, we propose to use
the As-Rigid-As-Possible deformation model for shape servoing.
Specifically, we propose a novel control scheme based on a
deformation Jacobian computed from this model. The proposed
scheme drives the object to a desired 3D shape using as feedback
the object’s measured current 3D shape. The scheme is simple to
implement, and it avoids some typical requirements in existing
work: specifically, (i) we do not need to know the object’s
mechanical deformation parameters, and (ii) we do not use a
Jacobian computed from data collected over a time window
while the robots move. We test the proposed scheme in bi-
arm shape servoing experiments with a variety of deformable
objects of different material (paper, rubber, plastic). Tracking
of the deformable object’s surface in 3D is performed in our
experiments via an algorithm based on monocular vision. The
experimental results validate the practicality of our scheme.

Index Terms—Visual Servoing, Perception for Grasping and
Manipulation, Sensor-based Control.

I. INTRODUCTION

DEFORMING an object into a desired shape by means
of robotic manipulation is an important task in diverse

domains. Examples include manufacturing [1]–[3], surgical
[4]–[6] and household [7], [8] applications. The problem of
carrying out this task using sensory feedback has been given
the name shape servoing [4]. In many practical instances of
shape servoing, the manipulated object deforms elastically (as
opposed to plastically). This is the case, e.g., with products
such as elastic rods, tubes, cables, sheet metal, rubber layers,
sponges, shoe soles, etc. In such instances, during the servoing
task the manipulated object has a natural tendency to resist
deformation and preserve rigidity locally.

In this paper, we propose a novel shape servoing scheme
based on a geometrical representation of that tendency. Specif-
ically, the representation we use is the well-known As-Rigid-
As-Possible (ARAP) model [9]. We compute numerically a
deformation Jacobian for the object by simulating this model,
and propose a robotic control law based on this Jacobian.
Using the perception of the object’s current 3D shape, the
scheme drives the object to a desired 3D shape.
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Fig. 1. View of our experimental setup during testing of bi-arm visual shape
servoing of a rubber tire tread with an overhead monocular camera.

Contribution. Compared with some existing literature, we
do not use any mechanical model of the object’s deforma-
tion. Instead, we just need to define a geometric mesh that
represents the object’s surface during the task with sufficient
accuracy. Moreover, other existing methods use deformation
Jacobians estimated from sensor data collected over a time
interval. This data is collected while the robots move, and the
estimation requires initialization. Our Jacobian, in contrast, is
computed using only the measured shape of the object at the
current instant. Therefore, our Jacobian is simpler to compute
and to apply, and does not need initialization.

The main advantages of our scheme are its simplicity and
generality. We show in experiments (the setup is illustrated in
figure 1) that the scheme can be applied on objects with dif-
ferent properties (paper, rubber, plastic) without needing any
specific mechanical modeling. The scheme controls accurately
the complete shape of these objects in 3D space.

II. RELATED WORK

A. Shape servoing with mechanical deformation models

Mechanical models are valuable tools for robotic manipula-
tion of deformable objects [10]. In particular, the knowledge
of the object’s deformation dynamics is useful to reduce
the difficulty of a shape servoing task. The Finite Element
Method (FEM) for modeling elastic objects has been the most
popular choice in the literature. In [11] and [12] this model
was used to define control actions performed in an open
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loop fashion. The work [3] addressed this issue exploiting a
reduced, computationally efficient FEM model defined from
a partition of the nodes in the model’s mesh. This was
applied to perform vision-based closed-loop shape servoing of
a Deformable Linear Object (DLO). In [13], FEM was used
to control a pose on the body of a deformable object, using
force (not vision) as sensory feedback. Instead of FEM, the
Reproducing Kernel Particle Method was used in [14] for a
shape servoing task. Unlike the works that exploit mechanical
physics-based deformation models, our scheme does not use
mechanical deformation parameters of the object, and is thus
simpler and less object-specific. It achieves shape servoing
via geometrical modeling and sensing, not requiring explicit
modeling or sensing of force.

B. Shape servoing with model-free estimation of sensor-based
deformation Jacobian

Most works in the recent literature on shape servoing are
based on the use of a deformation Jacobian estimated from
sensor measurements. This is a technically sound approach
to the problem and it has important advantages: for instance,
these works do not need to know any deformation model of
the object, and they have low computational cost. Examples
include [4], [7], [15]–[17]. Some of these works are tailored
to a specific type of objects, e.g., DLOs in [1], [18], or bodily
tissue in surgical applications in [5], [6]. Several works have
used machine learning to obtain the deformation Jacobian [6],
[8]. Generally all these approaches require estimating, over
a time window and under the robot motions, the variation
of certain shape features defined from sensor measurements.
Such estimation schemes are known to be sensitive to noise.
Moreover, degeneracy may occur if some Degrees Of Freedom
(DOF) are not excited during the robot motions, and one needs
to initialize the estimator by means of certain motions to be
executed prior to the control task. Our approach, in contrast,
uses only the current shape to compute the control law, and
it needs no initialization. In addition, most of these methods
control a reduced representation of the object’s shape, often
expressed in the sensor space (e.g., contours). In some cases
they do not actuate all the 6 DOF of each robot end-effector
pose. By comparison, we control a mesh that represents the
complete shape of the object. We control it in 3D and with 6
DOF per end-effector.

C. Shape servoing with geometric heuristics

Authors have recognized the interest of performing shape
servoing based simply on geometric criteria. An example is
[19], where the control scheme relied on an approximated
deformation Jacobian obtained from a heuristic (diminishing
rigidity). In contrast, our deformation Jacobian is obtained
from a complete deformation model (ARAP); therefore, it can
represent with more precision and richness the deformation
behavior. Our scheme performs stably and with low compu-
tational cost, thus overcoming the main issues that prompted
[19] to avoid the use of a deformation model in the Jacobian.
More recently, the shape servoing controller of [19] was used
in [20] within an interleaved planning-control approach. The

work [2] addressed shape servoing of isometrically deforming
objects. It did not use a deformation Jacobian; instead, the
control strategy was based on a heuristic shape interpolation.
This interpolation employed a geometric deformation model,
Position-Based Dynamics (PBD) [21]. In contrast, here we
do use a deformation Jacobian, and our control law is not
heuristic, but based on a formalized deformation model.
Moreover, our scheme is more general because ARAP can
handle not only isometric deformations, but also stretching.
We also validate the scheme with more diverse shape servoing
experiments than [2], [19], [20] did.

D. ARAP

The core idea of ARAP is to model geometrically the
tendency of an object to preserve local rigidity. The model
is based on an energy measure that expresses the deviation
from rigidity as the sum of deviations in local regions of the
object. Stable shapes of the object correspond to local minima
of that measure. The ARAP concept has proven powerful
and popular in diverse applications. It has seen widespread
use in computer graphics for shape interpolation, editing and
animation [9], [22], [23]. ARAP has also been employed as
deformation constraint in Shape-from-Template [24] and as
regularization prior during tracking of nonrigid scenes [25],
[26]. Recently, [8], [27] have used ARAP for regularization
and inference of occluded regions during deformable object
tracking under robotic manipulation. To our knowledge, our
paper is the first to use ARAP for shape servoing. A main
contribution of our work is thus to show that ARAP can be
employed to guide shape servoing tasks successfully with a
variety of diverse objects.

III. PROBLEM FORMULATION

The shape servoing problem we address consists in ma-
nipulating a deformable object in a feedback control loop
to drive it to a desired state. A flowchart of our proposed
solution can be found in figure 2. We consider a set of robots
M = {1, ...,m} whose end-effectors grasp the object. A
sensor (camera) viewing the object is used to provide the
feedback. We assume the relative poses of the camera frame
and robots’ frames are all known, as well as the robots’ kine-
matic models. We want to design a control scheme that will
compute a 6-DOF velocity input associated with every end-
effector frame: vi = [υT

i , ω
T
i ]

T , where we stack the velocities
for all in a column vector of length 6m: v = [vT

1 , ...,v
T
m]T .

We define the shape of the object as the shape of its surface.
We use a triangular surface mesh to represent this shape.
The resolution of the mesh is chosen such that it represents
with sufficient accuracy the geometry of the surface both in
its initial and desired states. We call the set of mesh nodes
N = {1, ..., n}. Henceforth, by shape we refer to the 3D
positions of the nodes of the chosen mesh. These positions
are expressed in the camera frame. We define different shapes
to be used in the control scheme:

• Current shape, s.
• Desired shape, s∗, which defines the control goal.
• Undeformed shape, su, used in the ARAP model.
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Fig. 2. Flowchart of the proposed shape servoing scheme. Online components
in solid blue lines, offline components in dashed orange lines.

• Initial shape, s0 = s(t = 0).

Each of them has size 3n × 1 and is a stacking of the node
positions. More precisely, the current position of node i is
named si, and we define s = [sT1 , ..., s

T
n ]

T (analogously for
the other shapes). s∗ and su are assumed to be known before
starting the servoing task. The measurement of s obtained from
the camera at every time instant is available to the control
scheme. We formulate the shape servoing task in terms of the
following error:

e = s− s∗. (1)

Driving this error to zero means the task has been completed.

A. Assumptions on object and robots

We assume the following regarding the object’s behavior
and its interaction with the robots:

• The robot controller can set exactly the 6-DOF velocity
at which the end-effectors move at every instant. The
grippers grasp the object firmly throughout the task.
The object’s shape stays statically stable (i.e., in quasi-
static equilibrium), and reacts smoothly to the robot
motions; i.e., infinitesimally, the change of shape under
end-effector displacements can be modeled by a defor-
mation Jacobian JO(s) [1], [4], [19], [28]. Therefore, the
following relation holds:

ṡ = JO(s)v. (2)

• The object has a tendency to resist deformation and
to maintain local rigidity, to the extent allowed by the
external forces acting on it. This corresponds to an elastic
(not plastic) behavior.

• The desired shape is a shape that the object can take (i.e.,
it is feasible). It is also reachable, (i) with the available
actuation (i.e., for the number of grippers used and for
their specific placement on the object), and (ii) by a
monotonic decrease of the shape error e, starting from
the initial shape.

Fig. 3. Definition of a rigid set coupled with the end-effector. The four mesh
nodes forming the rigid set are encircled in yellow.

IV. DEFORMATION JACOBIAN COMPUTATION

Our idea is to compute, using the ARAP model, an approx-
imation of the unknown Jacobian at the current shape JO(s).
Specifically, we compute numerically a Jacobian JA(s) by
simulating the ARAP model. The procedure is described next.

A. Finite-difference estimation

To compute the Jacobian, we need to link the robot end-
effector frame with the ARAP mesh. To do this, for each robot
i we define a rigid set Si ⊂ N , with |Si| = nSi such that the
nodes contained in Si are rigidly coupled with i’s end-effector.
A simple way, which we used in our tests, to define Si is to
choose it as the set of nearest neighbors: i.e., the four nodes
that surround the end-effector i (see an illustration in figure
3). This set can be identified from the knowledge of s0 and the
end-effector position in 3D. As Si contains at least three nodes
whose positions are not aligned, we can associate a Cartesian
frame, Fi, to it. To do so, let us define the positions of the
nodes in Si as sSi

∈ R3nSi . Then, we establish a mapping
fi : R3nSi → SE(3). This mapping gives the frame’s pose
ξi = fi(sSi ). Conversely, the positions of the nodes for the
frame’s pose are obtained as: sSi = f−1

i (ξi).
We parameterize the motion of Fi by 6 DOF (3 transla-

tional, 3 rotational). Starting from the current shape s, we
simulate a perturbation of one DOF. This is the standard first
step in finite-difference estimation. It gives us a new ξi. We
compute the positions of the nodes sSi

= f−1
i (ξi), and run

the simulation of ARAP (see Sect. IV-B). This gives the new
stable shape of the object after the perturbation. Using this new
stable shape we apply standard forward finite differences to
estimate the column of JA(s) corresponding to the perturbed
DOF using equation 2. Repeating this procedure for all DOF
(6 for every Si) gives the full matrix.

In experiments, we also test a reduced, translation-only,
Jacobian. This is computed by considering a single mesh
node (i.e., a rigid set having only one element), and the 3
translational DOF only. This has the advantage of greater
simplicity and is appropriate when the object’s region moving
rigidly with the end-effector is small (e.g., a small contact area
on a slack object). Sect. VII includes more details.
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B. ARAP simulation

We implemented ARAP following the algorithm of Sorkine
and Alexa [9]. This algorithm is well-known and we refer to
[9] for the details missing in the description we provide next.
We will highlight the specific aspects where we tailored the
algorithm to our application. ARAP relies on an energy E
that expresses the deviation from rigidity. A cell is defined for
each node in the mesh, comprising its first-order neighbors. We
call this neighborhood Ni for cell i. Then the global energy
is formulated as the sum of energies over all cells, i.e., E =∑

i∈N Ei, where:

Ei =
∑
j∈Ni

wij ||si − sj −Ri(s
u
i − suj )||2. (3)

Each wij is a scalar encoding the connection between nodes
i and j in the mesh. Ei expresses the deviation from rigidity
(i.e., from the undeformed shape) of the cell i. This is because
Ri is computed as the optimal rotation that minimizes Ei

for given su, s. Therefore, Ei measures only the non-rigid
component of the difference between the two cell shapes.
ARAP works by computing a shape for the full object that
corresponds to a minimum of E. This is explained next.

1) Optimal rotations: ARAP requires computing the op-
timal rotation Ri for every cell i ∈ N . For this we define
eij = si − sj , euij = sui − suj , and the covariance matrix:

Si =
∑
j∈Ni

wije
u
ije

T
ij = Pu

i DiP
T
i , (4)

where Pu
i and Pi contain respectively euij and eij , arranged in

columns for j ∈ Ni, and Di is a diagonal matrix that contains
the wij for j ∈ Ni. Then one computes the Singular Value
Decomposition (SVD) of the matrix, i.e., Si = UiΣiV

T
i .

From this, the optimal rotation is obtained:

Ri = Vi diag(1, 1, det(ViU
T
i )) U

T
i . (5)

Due to the requirement of computing an SVD for each
Ri, this is the most computationally expensive part of our
implementation. We avoid some unnecessary calculations by
realizing that after perturbing a given DOF of a given rigid
set (Sect. IV-A), Ri changes only for the cells i that contain
a node in the rigid set that has been perturbed. Therefore, for
the remaining cells, Ri only needs to be computed once, for
the current shape s before perturbation.

2) Linear system solution: ARAP divides the nodes into
two groups: handled and free. The handled nodes are those
whose position is fixed directly by external constraints. The
main idea of ARAP is that the object will remain as rigid as
possible under these externally fixed positions. Concretely, the
stable shape of the object in quasi-static equilibrium after the
motion will be at a local minimum of the energy E. For this,
one enforces the gradient ∂E/∂si for every free node i to be
zero. This results in this equation for a free node i:∑

j∈Ni

wij(si − sj) =
∑
j∈Ni

wij

2
(Ri +Rj)(s

u
i − suj ). (6)

On the other hand, the positions of the handled nodes are
defined as fixed. In our case, the handled nodes are the nodes

belonging to the rigid set being perturbed. We fix their posi-
tions as those computed after perturbation (see Sect. IV-A),
which we call ci of size nSi × 3 for rigid set i. Considering
the equations for all nodes gives a linear system expression:
Lsm = b, where L is an n × n size Laplacian matrix,
sm is the shape to be computed (i.e., the new stable shape
after perturbation), expressed in n× 3 format, and b contains
the right-hand side of (6). The handled node constraints are
included as rowsSi(sm) = ci for every rigid set i. The linear
system expression consists of an individual system for each
of the three coordinates. Since our meshes are relatively small
(tens of nodes), solving this linear system does not have a
relevant effect on the overall computation time. We employ a
standard least-squares solution method via the pseudoinverse
of the system matrix.

ARAP uses an alternating minimization strategy where the
shape that locally minimizes E is found by iterating the
described procedure: i.e., the optimal rotations (Sect. IV-B1)
are recomputed with the new s and the linear system is solved
again. In [9], 2-3 iterations of the alternating minimization
are used for a scenario where a user interactively moves the
handled nodes in a visualization application. In our case, the
motions of the handled nodes are small, so as to estimate the
Jacobian. For this reason, we use a single iteration. That is
to say, we run each of the two steps (computation of optimal
rotations and solution of linear system) once. This provides
suitable results in practice and a fast computation time.

C. Discussion

An interesting fact to highlight is that we compute the
Jacobian using only the current shape s, with no need for
dynamic estimators. Moreover, the ARAP model is perfectly
suited to the quasi-static scenario we consider because this
model computes the new stable shape directly without having
to simulate, and keep track of, velocities of the mesh nodes.
The Jacobian computation is fast enough for real-time shape
servoing: our non-optimized implementation runs at 20 Hz or
more, for two robots (12 DOFs), with meshes ranging from
24 to 70 nodes. More details are given in Sect. VII.

V. CONTROL LAW

We propose the following proportional control law, based
on the ARAP Jacobian computed as explained in Sect. IV:

v = −λ J+
A(s) e, (7)

where λ is a positive scalar gain and J+
A(s) is the pseudoin-

verse of the ARAP Jacobian. Note that JA(s) was computed
with respect to motions of Fi ∀i ∈ M, which are Cartesian
frames defined to represent the object’s rigid sets. Therefore
v are velocities to be applied to these rigid set frames. We
transform for each robot i the velocity of the rigid set frame
to the velocity of the end-effector frame rigidly coupled with it
(Sect. IV-A). Note that for every robot i the poses of these two
frames are known at each instant. The resulting end-effector
Cartesian velocities are sent to the robots. We assume the rigid
sets are fixed (i.e., a robot is coupled with the same region of
the object throughout the task). However, note that we do not
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assume a specific fixed geometry of the coupling between end-
effector and object. Therefore, an important fact to highlight
is that our control scheme is robust to minor changes, such as
moderate slippage, of the grasping conditions during servoing.

A. Stability discussion

The control law (7) is a classical one in visual servoing.
Our control scheme is underactuated. For typical mesh sizes
the number of features to be controlled (3n) clearly exceeds
the number of actuated degrees of freedom (6m). Therefore,
global stability (i.e., convergence to the desired shape from
any initial condition) cannot be guaranteed when using (7).
As discussed in, e.g., [29], with this control law the system is
stable locally around the equilibrium s∗ if J+

A(s) and JO(s)
have full rank and the product J+

A(s) JO(s) is a positive
definite matrix.

Two important facts to note are: (i) J+
A(s) JO(s) can be

positive definite as long as JA(s) approximates JO(s) not too
coarsely [29]. Therefore, precise knowledge of the Jacobian
JO(s) is not needed. (ii) We are just approximating the object’s
instantaneous reaction to forces, not its behavior over a long
time horizon. Doing the latter would be challenging without
knowledge of a deformation model for the specific object
being manipulated. Considering these two facts and under the
assumptions made (Sect. III-A), it is reasonable to use ARAP
to represent, via JA(s), the object’s instantaneous tendency to
preserve rigidity when subjected to forces. ARAP’s principle
is to approximate geometrically the behavior of real physical
objects, and its ability to do so has been extensively validated
in diverse applications. We verify the stability and suitability
of the scheme in our experiments.

VI. SHAPE TRACKING

To measure s, we employ a shape tracking pipeline that
takes as starting point the method proposed in [2]. The
pipeline employs monocular vision and is based on Shape-
from-Template (SfT) [30]–[32]. A monocular camera provides
precise performance while being small, light-weight, and low-
cost. This motivates using it for 3D shape tracking instead of
an RGB-D sensor [27], [33], [34]. In this paper, our focus is
on shape servoing; therefore, we will only provide brief details
about the shape tracking pipeline. The pipeline is illustrated
in figure 4. It needs the knowledge of a template, which is a
reference model of the object. The information in the template
includes a mesh, a deformation law (PBD is used for this) and
the appearance (via a texture map) of the object. We use for
shape tracking the same mesh as in the ARAP model.

The pipeline needs the object’s surface to have visual
texture, for matching purposes. In addition, it assumes that
the object’s surface deforms isometrically. The known 3D
positions of the end-effectors, which are coupled with the
object, are used as constraints in the inference of s. This
makes the inference more precise and robust. The process of
applying these constraints is to firstly identify in the camera
image the closest mesh node to each end-effector. Then, during
tracking, the 3D position of that node can be defined as equal
to the known 3D position of that end-effector in the camera

Fig. 4. Diagram showing the modules of the shape tracking pipeline.

frame. However, due to the possible errors in robot-camera
relative calibration, we use a soft constraint instead. In this soft
constraint, for each end-effector, we consider a sphere with a
small radius centered at the 3D position of the end-effector.
The constraint is, then, that if the corresponding mesh node is
outside this sphere, it will be absorbed to the closest point on
the surface of the sphere.

The tracking algorithm we use here provides remarkable
improvements with respect to the one used in [2]. For example,
it can work with natural textures, and it is faster (up to 30 FPS)
despite being methodologically more complex.

VII. EXPERIMENTS

In this section, we present the experimental results. A video
of our experiments is attached and can also be found at
https://youtu.be/1w2tbgjLrUs.

A. Experimental setup

We validate the effectiveness of our proposed scheme
through different tasks conducted with two Franka Emika
robot arms each with 7 DOF. The input for the shape tracking
pipeline is provided by a calibrated Logitech C270 webcam
installed on top of the two robots facing downward. We also
externally calibrate the camera with the two robots using
Moveit Hand-eye calibration plugin. The entire setup is shown
in figure 1. Both the shape tracking and shape servoing codes
were written in C++ and ran on a Dell laptop with an Intel
Core i7 CPU, an NVIDIA Quadro T1000 GPU and 16GB
RAM. The shape tracking and shape servoing are implemented
as two separate ROS nodes that communicate in parallel with
each other. We also implement the control of the robots in
ROS using Cartesian velocity control.

B. Shape servoing tasks

We report the results of 7 shape servoing tasks involving
4 distinct objects: a Spiderman poster, a place mat, a piece
of tire tread and a shoe sole. The general information of
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TABLE I
PARAMETERS OF THE SHAPE SERVOING TASKS.

Task 1 2 3 4 5 6 7
Mesh Type (Regular/Irregular) R R R R R R I

Mesh Nodes 7x10 4x6 6x8 6x8 6x8 6x8 40
Control Computation (Hz) 20 30 24 24 24 24 26

each task including the tested object, initial, desired, and final
shapes of the object, several snapshots of the evolution of
the task, and finally the error (RMS of e) graph are shown
in figure 5. The process of each task starts by firstly setting
the desired shape of the object. This is done by manually
moving the two arms while grasping the object. We infer and
store this desired shape using our shape tracking pipeline.
This desired shape is indicated as a red mesh in the RViz
visualization shown in figure 5. Afterwards, we manually
move the two robot arms to set the deforming object in its
initial shape. We then start the task. The current shape s is
inferred by our shape tracking pipeline at each time step. This
current shape is indicated as a blue mesh with green nodes
in the RViz representation. In order to avoid reflexes (which
abort the motion) in the robots caused by sudden and non-
smooth movements, we increase the gain progressively at the
beginning of the robots’ movement. Moreover, we saturate the
translational and rotational velocities sent to the robots.

To validate the generality of the proposed scheme, the
defined tasks cover diverse materials with different stiffness,
various deformations, and several mesh sizes. We also evaluate
the behavior under effects such as uncertainty of the grasping
and unstable shape tracking conditions, as described below.
The main parameters of each task are tabulated in table I. In
the following, we explain the tasks in more detail.

1) Task 1: This task aims to deform a Spiderman poster
printed on an A4 paper by just applying translation to the
robot end-effectors without any rotation (see Sect. IV-A). To
this end, in each side of the paper, we select only one mesh
node as rigid set. As a result, ARAP shape servoing controller
merely updates the translational velocity of the robots. In order
to achieve a reasonably low error at the end of task, we tried to
keep the rotational pose of the end-effectors unchanged during
setting both the desired and initial shapes of the Spiderman
poster.

2) Task 2: This task is conducted with a place mat that
is made out of plastic which is stiffer than paper. In this
task, in contrast to Task 1, we start from a highly deformed
initial shape to a slightly deformed desired shape. The desired
shape is both translated and rotated in different directions with
respect to the initial shape.

3) Task 3: This task is carried out with the place mat
but with a concave desired shape and a denser mesh. This
illustrates that the servoing scheme is not tied to a specific
mesh for a given object. One can use different meshes as long
as they capture the object’s geometry precisely enough.

4) Task 4: This task is also performed with the place mat
with almost the same initial and desired shapes as Task 2.
The major change that we made is displacing end-effectors
at the initial shape with respect to the their locations when
the desired shape was formed. Specifically, we displaced each

end-effector to its neighbor rigid set on the place mat in inverse
directions with respect to each other. We then run the control
scheme and try to reach the desired shape using these two new
rigid sets.

5) Task 5: The object used in this task is a piece of tire
tread from a heavy vehicle. In order to make it recognizable
by our shape tracking pipeline, we added some texture on its
surface by writing on it using a white marker.

6) Task 6: This task is also performed with the tire tread
but with a convex desired shape.

7) Task 7: The shoe sole made of rubber used in this task is
the stiffest among our deforming objects. We use an irregular
triangular mesh to represent this object in both shape tracking
and shape servoing algorithms. In order to make the shoe sole
detectable by our shape tracking pipeline, we highlighted the
available grooves on it and also drew some new lines on its
surface using a black pen.

C. Results and Discussion

The proposed ARAP shape servoing scheme is able to
accurately accomplish all the tasks covering different mate-
rials, desired shapes, and mesh sizes. As shown in the RViz
representations in figure 5, in each task, the controller moves
the robots gradually to conform the shape of the deforming
object to the desired shape. The shape RMS error for each
task is illustrated in the last column of the figure 5. As can be
observed, some noise is present in a few of the shape RMS
error graphs. This noise is introduced by the shape tracking
pipeline. One could apply a temporal averaging to the positions
of the object mesh nodes between consecutive frames in the
shape tracking pipeline. This could diminish the noise and
provide a more stable 3D inferred shape. However, our goal
here is to show that our ARAP shape servoing scheme is
robust against these noises and converges successfully in their
presence.

Another point that should be noted is that the control scheme
can be robust to changes of the grasping configuration. To
clarify this, we illustrate in figure 6 the pose of the end-
effectors in the desired and final shapes of Task 4 and Task
5 with green and red dashed lines, respectively. In Task 4,
the relative poses of the end-effectors and their corresponding
rigid sets are changed manually before starting the task. In
Task 5, in turn, the right end-effector rotated due to the
slippage during the task while remaining in the same rigid
set. Despite these changes in the relative pose of the end-
effectors with respect to their grasping points, the shape
servoing scheme managed to accomplish both tasks thanks to
guiding the rigid sets under a closed control loop. As long as
the end-effectors remain coupled with the guiding rigid sets,
the deforming object can converge to the desired shape.

We note that if the desired shape is unreachable or in-
feasible, the scheme converges to a shape corresponding
to a local minimum of the error. Finally, we compare the
prediction capability of our ARAP deformation Jacobian and
the diminishing rigidity (DR) Jacobian used in [19], [20]. For
this we use some of the less noisy data from our servoing tasks.
As comparison metric we use the cosine similarity between the
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Fig. 5. Results for the seven tasks. For each we show, from left to right: image of the undeformed object; initial, desired and final shape (camera images on
top, images from an external camera on bottom); initial, intermediate and final states represented in RViz; and evolution of error (RMS of e) over time.

measured ṡ vector and each of the two predicted ones. The
closer the values of this metric to 1, the better the alignment
between the two vectors. From table II, the ARAP Jacobian
exhibits better accuracy (higher averages, Avg) and stability
(lower standard deviations, Std) overall.

VIII. CONCLUSION

The proposed shape servoing scheme based on ARAP is
simple yet effective. Its limitations include the following: as
we use a surface ARAP model, the servoing is limited to thin-
shell objects or surfaces of volumetric objects. The scheme

TABLE II
PERFORMANCE EVALUATION OF SHAPE CHANGE PREDICTION.

Task 1 3 5
Jacobian Avg Std Avg Std Avg Std
ARAP 0.839 0.045 0.816 0.052 0.890 0.029

DR 0.663 0.388 0.822 0.144 0.728 0.273

is not designed to go across singular configurations (e.g., a
perfectly flat shape for a planar object), or to servo non-elastic
deformations. It needs continuous tracking of the shape, which
may be difficult for large deformations. In this paper we did
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Fig. 6. Comparison between the poses of the end-effectors in the desired
(green lines) and the final (red lines) shapes in Tasks 4 (top) and 5 (bottom).
In Task 4 the end-effectors were displaced manually. In Task 5, the right end-
effector rotated due to slippage during the task.

not consider the effect of gravity. We did not need to for the
objects we handled. Still, for low-stiffness objects (i.e., cloth)
incorporating gravity may be necessary. We would also like
to explore extensions such as full volumetric shape servoing,
scenarios with poorer shape visibility, or handling of contact
with the environment.
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[31] D. T. Ngo, J. Östlund, and P. Fua, “Template-based monocular 3D shape
recovery using Laplacian meshes,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 38, no. 1, pp. 172–187, 2016.

[32] E. Ozgur and A. Bartoli, “Particle-SfT: a Provably-Convergent, Fast
Shape-from-Template Algorithm,” International Journal of Computer
Vision, vol. 123, no. 2, pp. 184–205, 2017.

[33] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable objects
with point clouds,” in IEEE International Conference on Robotics and
Automation, 2013, pp. 1130–1137.

[34] A. Petit, V. Lippiello, G. A. Fontanelli, and B. Siciliano, “Tracking
elastic deformable objects with an RGB-D sensor for a pizza chef robot,”
Robotics and Auton. Systems, vol. 88, pp. 187–201, 2017.


