
TECHNICAL ADVANCES

3D object recognition using invariants of 2D projection curves

Mustafa Unel • Octavian Soldea • Erol Ozgur •

Alp Bassa

Revised: 14 August 2009 / Accepted: 29 September 2009 / Published online: 22 May 2010

� Springer-Verlag London Limited 2010

Abstract This paper presents a new method for recogniz-

ing 3D objects based on the comparison of invariants of their

2D projection curves. We show that Euclidean equivalent 3D

surfaces imply affine equivalent 2D projection curves that

are obtained from the projection of cross-section curves of

the surfaces onto the coordinate planes. Planes used to

extract cross-section curves are chosen to be orthogonal to

the principal axes of the defining surfaces. Projection curves

are represented using implicit polynomial equations. Affine

algebraic and geometric invariants of projection curves are

constructed and compared under a variety of distance mea-

sures. Results are verified by several experiments with

objects from different classes and within the same class.

Keywords Recognition � Algebraic surfaces �
Implicit polynomials � Invariants � Principal axes

1 Introduction

Object recognition is a central problem in computer vision.

Most object recognition systems can be classified into three

categories [1] depending upon what is measured from the

scene: (1) systems that use only intensity data, (2) systems

that use only range data, and (3) systems that use both

intensity and range data. Systems based on intensity data

mostly use points and straight line segments as features.

Systems based on range data use planar or quadric surfaces

as the most common features, but points and line segments

are also used. State-of-the-art approaches to object recog-

nition are [2]:

• Pose-consistency approaches: these methods use geo-

metric techniques to identify a sufficient number of

matches between image and model features. These

approaches include alignment techniques and affine and

projective invariants. An advantage of invariant

approach is that indexing can be done in sublinear time.

• Template matchers: these methods record a description

of all images of each object. They have been used quite

successfully in various tasks, such as face identification

and 3D object recognition. Their great advantage is

that, unlike purely geometric approaches, they exploit

the great discriminatory power of image brightness/

color information. However, they usually require a

separate segmentation step that separates the objects

from the background, and they are potentially sensitive

to illumination changes.

• Relational matchers: these methods describe objects in

terms of relations between templates. Usually, one

looks for rather conventional image patches and then

reasons about relations between them. There are two

difficulties with this approach: first, some relational

models are easy to match, but some can be difficult to

match; second, current methods handle local patches

(such as eye corners) and simple objects (such as faces)

well, but it is quite challenging to build matchers that

find, for example, animals based on relations between

image patches.

M. Unel (&) � O. Soldea � E. Ozgur � A. Bassa

Faculty of Engineering and Natural Sciences,

Sabanci University, Istanbul, Turkey

e-mail: munel@sabanciuniv.edu

O. Soldea

e-mail: octavian@sabanciuniv.edu

E. Ozgur

e-mail: erol@sabanciuniv.edu

A. Bassa

e-mail: bassa@sabanciuniv.edu

123

Pattern Anal Applic (2010) 13:451–468

DOI 10.1007/s10044-010-0179-5

• Aspect graphs: these methods explicitly record the

qualitative changes in object appearance due to changes

in viewpoint. Recognition techniques based on aspect

graphs lie somewhere between appearance-based and

structural methods since they actually describe the

appearance of an object by the evolution of its structure

as a function of viewpoint. In practice, such approaches

have not fulfilled their promise partly because the

reliable extraction of contour features, such as termi-

nations and T-junctions from real images is extremely

difficult and partly because even relatively simple

objects may have extremely complicated aspect graphs.

1.1 Summary of existing related work

Gonzalez et al. [3] recognized 3D objects by using Fourier

descriptors for clustering the silhouettes of the object viewed

from multiple viewpoints. Kim et al. [4] proposed a new

scalable 3D object representation, which utilizes a common-

frame constellation model (CFCM), and a fully automated

learning method, appearance-based automatic feature clus-

tering and sequential construction of clustered CFCMs, to

recognize objects. Rothganger et al. [5] presented a novel

representation for 3D objects by employing local affine-

invariant descriptors of their images and defining the spatial

relationships between the corresponding surface patches for

recognition purpose. Lee et al. [6] implemented a fast

2-stage algorithm for recognizing 3D objects using a new

feature space, built from curvature scale space images, and

the matching part is realized in the eigenspaces of the feature

space. Li et al. [7] integrated Algebraic Functions of Views

(AFoVs) with indexing and learning methods in order to

recognize 3D objects. Nagabhushan et al. [8] developed a

new technique called two-dimensional principal component

analysis (2D-PCA) for 3D object representation and recog-

nition. Chen and Bhanu [9] introduced an integrated local

surface descriptor, which is calculated only at the features

points of the object surface for surface representation and 3D

object recognition. The local surface descriptor is charac-

terized by its centroid, its local surface type, and a 2D

histogram. Mian et al. [10] performed model-based 3D

object recognition via similarity measures by constructing a

model of a 3D object from range images and defining tensors

among their views.

Diplaros et al. [11] combined the color and shape

invariants in a multidimensional color–shape context

which is subsequently used as an index for discriminative

purposes in object recognition. Shotton et al. [12] proposed

a system which is based only on local contour features and

uses a novel formulation of chamfer matching for an

automatic visual recognition. Adan et al. [13] presented a

strategy for 3D object recognition using a flexible

similarity measure based on cone-curvature (CC) features

which originates from the recent modeling wave (MW)

concept. Shan et al. [14] proposed to represent each model

object as a collection of shapeme histograms which enables

recognition of partially observed query objects from a

database of complete model objects by matching the query

histogram. Several classification and recognition schemes

are characterized by complex searches in exponential

graphs of configurations, see for example [15, 16]. For

some other older references on alignment and invariants

based on moments, B-splines, superquadrics, conics, dif-

ferential invariants, and Fourier descriptors, see [17]–[23].

1.2 An overview of our method

Algebraic curves/surfaces have proved to be very useful for

shape representation [24–27]. Invariants associated with

algebraic models have also been employed in several

model-based vision and pattern recognition applications

[29–33]. In the past few years, implicit representations have

been used more frequently, allowing a better treatment of

several problems. It is sometimes more convenient to have

an implicit equation in applications, such as determining

curve/surface intersections and the point classification

problem, since they imply a simple evaluation of the

implicit functions. Implicit polynomials (IP) are also well-

suited for determining ‘‘how close’’ measured points on a

curve/surface are to the ideal curve/surface, once the ideal

surface is modeled with an algebraic equation [34].

This work develops new techniques for identifying and

comparing 3D objects from their 2D projection curves.

Motivation for this work comes from the fact that computing

geometric invariants of 3D surfaces is not an easy task and

algebraic invariants, usually obtained by tedious symbolic

manipulations, are highly involved non-linear functions of

the curve/surface coefficients [35], and therefore they are

quite sensitive to data perturbations. This means that they

cannot be used in robust object identification and compari-

son problems. On the other hand, there is a significant

amount of work on efficient computational procedures for

computing geometric and/or algebraic invariants of 2D

curves [29, 30, 31]. Therefore, instead of comparing 3D

algebraic surfaces using non-robust algebraic invariants, we

propose to use robust algebraic/geometric invariants of 2D

projection curves obtained from boundaries of objects under

analysis. This way, a considerable speedup is also obtained

since using invariants of curves instead of boundary surfaces

is computationally much more efficient.

The proposed method begins with a range image or a

tessellated representation of an object. Both of the versions

compute the orientation of the analyzed object. When the

input is a range image, our scheme fits an algebraic surface

to the object. The eigenvectors of the second-order moment

452 Pattern Anal Applic (2010) 13:451–468

123

matrix of the surface data are then computed. These

eigenvectors imply three orthogonal directions in space

along which surface data scatter most. They are the prin-

cipal axes of the surface. Cross sections of the algebraic

surface with planes orthogonal to its principal axes yield

projection curves on the coordinate planes. When the input

is a tessellated image, we compute the orientation of the

analyzed object employing a quasi-convex hull of the

boundary of the subject. The quasi-convex hull induces an

orientation of the input object in terms of inertia axes, as

defined by the moment of inertia tensor. Cross sections are

obtained by intersecting planes perpendicular to axes of

inertia and the tessellated model. Since cross sections are

planar curves, we treat them as projection curves, i.e.

consider reorienting objects such that inertia axes coincide

with the coordinate axes.

We show that these projection curves are affine equiv-

alent. We propose two methods for constructing both

algebraic and geometric affine invariants of projection

curves. For 3D object recognition, we employ an average

similarity measure of the invariant vectors of certain

number of projection curves on the coordinate planes. In

addition, we also employ a distance measure between sets

of invariants. Our method falls into the category of pose-

consistency approaches described above.

This paper is organized as follows. In Sect. 2 we define

cross sections and projection curves of 3D objects and

establishes affine equivalence of projection curves for

Euclidean equivalent surfaces in the form of a theorem.

Projection curves obtained from principal cross sections are

also presented. In Sect. 3 we present algebraic representa-

tions for modeling. We consider both algebraic surfaces and

curves. Section 4 develops affine invariants of projection

curves, defines a similarity for comparing invariant vectors,

and presents the proposed method in algorithmic form.

Section 5 discusses experimental results. Finally, Sect. 6

summarizes our work and concludes with some remarks.

2 Cross sections of an object and projection curves

Intersection of a 3D object with a plane in arbitrary ori-

entation gives a cross-section curve. Further, we project

this curve onto the coordinate planes and obtain a projec-

tion curve. More precisely, let X be a 3D object and qX be

its boundary. Moreover, let P be a plane in R
3. Denoting

the cross-section curve by C, we have

X \P ¼ C ð1Þ

We will orthogonally project the curve C onto the z = 0

plane and denote the resulting projection curve by !. In

other words,

C�!Pz¼0
! ð2Þ

In case the plane P is orthogonal to the z = 0 plane, one

should consider projections onto the two other coordinate

planes since projection onto the z = 0 plane does not imply

a well-defined closed-bounded curve.

2.1 Affine equivalent projection curves

Let B and �B be two object boundaries related by a

Euclidean/rigid transformation E, which consists of a

rotation, R, and a translation, T, and let P : z = a1x ?

b1y ? c1 and �P : z ¼ a2xþ b2yþ c2 be the correspond-

ing planes that are related by the same rigid transforma-

tion. Let C and �C be the cross-section curves, and let !
and �! be the projection of C and �C under the projection

Pz=0 onto the plane z = 0, respectively. The following

theorem establishes affine equivalence of ! and �!.

Theorem 1 If two surfaces B and �B are Euclidean

equivalent, their corresponding projection curves ! and �!
are affine equivalent.

Proof Euclidean equivalence of B and �B implies

Euclidean equivalence of C and �C, namely

B�!E �B) C�!E �C ð3Þ

To prove this basic fact note that C and �C are two planar

curves on the corresponding planes P : z = a1x ? b1y ?

c1 and �p : z ¼ a2xþ b2yþ c2. Since Euclidean equivalence

of B and �B implies Euclidean equivalence of the

corresponding planes that are related by the same

Euclidean transformation, it follows that C and �C are

also Euclidean equivalent.

Let (x, y, z)T and ð�x; �y; �zÞT be two corresponding points

on C and �C, respectively. In light of (3), C and �C are related

by E, and therefore it follows that

�x
�y
�z

0
@

1
A ¼

r11 r12 r13

r21 r22 r23

r31 r32 r33

0
@

1
A

x
y
z

0
@

1
Aþ

t1

t2

t3

0
@

1
A ð4Þ

Since the point (x, y, z)T lies on the plane P, we have

z = a1x ? b1y ? c1. Substituting this into (4) and

considering the first two equations, we obtain

�x
�y

� �
¼ r11 þ r13a1 r12 þ r13b1

r21 þ r23a1 r22 þ r23b1

� �
x
y

� �

þ t1 þ r13c1

t2 þ r23c1

� �
ð5Þ

which proves affine equivalence of ! and �!.

Pattern Anal Applic (2010) 13:451–468 453

123

2.2 Projection curves obtained from primary cross

sections

We are interested in cross sections that are intrinsic to each

3D object. In this section, we define intrinsic cross sections

and use the term primary. In order to define primary cross

sections, we introduce moments.

The moment of order p, q, r of a 3D object X is

mp;q;r ¼
Z

X

xpyqzrdm;

where dm is the differential element of mass inside X.

Moments, among other things, define physical properties of

objects, such as center of mass as well as orientation of

objects. For example, the mass center of X, G, is defined

by G ¼ Gx;Gy;Gz

� �
¼ m1;0;0

m0;0;0
;

m0;1;0

m0;0;0
;

m0;0;1

m0;0;0

� �
:

2.2.1 Primary cross sections: the cloud of points case

Let

Rp;q;r ¼
Z

X

x� Gxð Þp y� Gy

� �q
z� Gzð Þrdm

0
@

1
A;

where p ? q ? r = 2. We call this matrix the second-order

moment matrix. When the input of our scheme is a cloud of

points, we approximate the center and the second-order

moment matrix using a sufficient number of data points, Xi,

i = 1, ..., N, on it as follows:

G ¼
PN

i¼1 Xi

N
ð6Þ

R ¼
PN

i¼1ðXi � GÞðXi � GÞT

N
ð7Þ

The second-order moment matrix is symmetric, R = RT,

and semi-positive definite, R C 0. Therefore, its eigenvalues

are real and non-negative. Let these eigenvalues be denoted

by k1, k2, and k3, and the corresponding eigenvectors by v1,

v2, and v3. These eigenvectors form the axes of an ellipsoid,

with half-axes lengths
ffiffiffiffiffi
k1

p
;
ffiffiffiffiffi
k2

p
, and

ffiffiffiffiffi
k3

p
: Eigenvector

directions are the principal axes along which data scatter

most [36, 37]. We would like to note that if a surface in 3D

space is subject to a Euclidean transformation, its principal

axes will also be subjected to the same transformation. We

refer to the third axis as the primary axis.

Assume we have computed the mass center and the

orientation of a 3D object. A set of primary planes is a set

of planes that are perpendicular to the primary axis and

they are symmetrically located around the origin. For

clarity, if the cardinality of the set of primary planes is odd,

the central plane passes through the mass center of the 3D

object. The intersections of a set of primary planes with the

3D surface define a set of primary cross sections.

2.2.2 Primary cross sections: the tessellation case

For tessellated surfaces, however, we compute moments

using explicit formulas as described in [38]. We embed the

tessellated surface into a quasi-convex hull. We refer to the

center of mass and orientation of the quasi-convex hull as

being those of the underlying object. In this case, we define

the orientation of object via inertia axes. We refer to the

axis that correspond to the smallest absolute eigenvalue in

the moment of inertia tensor as the primary axis.

In this context, we use the term principal axes in the

same way we have defined it in Sect. 2.2.1. The intersec-

tions of a set of primary planes with the tessellated model

defines a set of primary cross sections.

In the cloud of points case, we use the term primary

projection curve to refer to projections of primary cross

sections onto coordinate planes. In the tessellation case, we

use the term primary projection curve to refer to the pri-

mary cross sections if the object’s inertia axes are aligned

with the coordinate axes.

3 Modeling object boundaries using algebraic

representations

Algebraic curves and surfaces are among the most pow-

erful boundary representation methods that can be used to

model 2D and 3D objects. In this work, we will consider

fitting of both 3D and 2D algebraic representations.

3.1 Obtaining projection curves by fitting algebraic

surfaces

3D object data can be modeled by nth degree implicit

surfaces of the form:

Fnðx; y; zÞ ¼
X

0� i;j;k;iþjþk� n

aijkxiyjzk

¼ a0;0;0|ffl{zffl}
H0

þ a1;0;0xþ a0;1;0yþ a0;0;1z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H1ðx;y;zÞ

þ � � �

þ an;0;0xn þ � � � þ a0;0;nzn

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hnðx;y;zÞ

¼ ½1 x . . . zn�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
mT

½a0;0;0 a1;0;0 . . . a0;0;n�T|ffl{zffl}
a

¼ mT a ¼ 0 ð8Þ

where each ternary form Hr(x, y, z) is a homogeneous

polynomial of degree r (0 B r B n) in x, y, and z, i.e. sum

of the exponents in each term is r; mT is the vector of

454 Pattern Anal Applic (2010) 13:451–468

123

monomials; and a is the vector of implicit polynomial (IP)

coefficients. An algebraic surface is called monic if

an,0,0 = 1. A 2D curve model is similar, but with the z

terms discarded, namely

fnðx; yÞ ¼
X

0� i;j;iþj� n

aijx
iyj ¼ a0;0|{z}

h0

þ a1;0xþ a0;1y|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
h1ðx;yÞ

þ � � �

þ an;0xn þ � � � þ a0;nyn

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hnðx;yÞ

¼ ½1 x . . . yn�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
mT

½a0;0 a1;0 . . . a0;n�T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

¼ mT a ¼ 0 ð9Þ

The problem of representing a dataset or some of its

sections by an IP model is referred to as the polynomial

fitting problem. Usually a cost function in the following

form is minimized

J ¼ 1

N

XN

i¼1

Dist2ðPi; ZðFnÞÞ ð10Þ

where Dist(Pi, Z(F)) is the distance of the data point

Pi = (xi, yi, zi)i=1
N to the zero set Z(Fn) = {(x, y, z) :

Fn(x, y, z) = 0} of the IP model Fn(x, y, z).

There are two main categories of IP fitting techniques:

the non-linear methods, which use the true geometric dis-

tance or Euclidean approximation, and linear methods

based on the algebraic distance. The non-linear approaches

are invariant to transformations in the Euclidean space and

are not biased [39]. However, except for very basic shapes,

there is no available closed form expression for the

Euclidean distance. Therefore, very time-consuming iter-

ative optimization procedures must be carried out [24, 25].

Thus, linear techniques have been applied for the IP

fitting problem [26, 27, 40]. Consequently, (10) can be

formulated as a linear least squares problem, which make

these methods much faster than the non-linear solutions.

In light of Sect. 2, cross section of an algebraic surface

Fn(x, y, z) = 0 with a plane z = ax ? by ? c yields the

following cross-section curve:

C ¼D fðx; y; zÞj Fnðx; y; zÞ ¼ 0; z ¼ axþ byþ cg ð11Þ

The orthogonal projection of C onto z = 0 will give us the

projection curve ! as

C�!Pz¼0
!¼D fðx; yÞj fnðx; yÞ ¼ 0g

where fn(x, y) = 0 is an algebraic curve obtained by

plugging z = ax ? by ? c into Fn(x, y, z) = 0.

3.2 Obtaining projection curves through fitting

algebraic curves to the cross sections

of tessellations

When objects have relatively complicated shapes we avoid

3D polynomial fitting. We compute intersection of the 3D

input object with cross-section planes and fit polynomials

to the resulting 2D intersection contours. We describe this

procedure using images in Fig. 1. Consider the 3D tessel-

lated object at the top of Fig. 1. This image shows an ant

which is a tessellated model in Princeton shape benchmark

[41]. We show a quasi-convex hull of the ant in violet. This

quasi-convex hull is further used in computing the orien-

tation of the object. The axes of inertia are superimposed

on the image and shown in red, green, and blue. Nine

primary cross sections, which are perpendicular to the red

axis, i.e. x axis, intersect the body and the legs of the ant.

These nine intersection curves are superimposed on the

model and are shown in blue. The intersection curve

undergoes 2D polynomial fitting. The results of the

Fig. 1 Polynomial fitting for

the primary cross sections of an

ant, which is an object in

Princeton shape benchmark.

The second and third image

lines represent bivariate

polynomial fittings to the

primary cross sections

Pattern Anal Applic (2010) 13:451–468 455

123

polynomial fitting for each one of the nine intersections are

shown in the second and the third line of Fig. 1.

As a conclusion for Sects. 2 and 3, we summarize the

flow of computation in an algorithm. This algorithm is

presented in Algorithm 1.

4 Affine invariants of algebraic curves

Affine equivalent curves have the same affine invariants.

One can compute algebraic/geometric affine invariants of

projection curves using a variety of techniques. In this

paper, we present two methods for constructing such

invariants.

Before introducing invariants, let us recall the following

important result.

Theorem 2 [31] A non-degenerate (monic) polynomial

fn(x, y) can be uniquely expressed as a finite sum of the

products of real and/or complex line factors, namely

fnðx; yÞ ¼ Pnðx; yÞ þ cn�2½Pn�2ðx; yÞ þ cn�4½Pn�4ðx; yÞ
þ � � ��� ð12Þ

where each Pkðx; yÞ ¼
Qk

i¼1 Liðx; yÞ is the product of k line

factors and ck’s are some real scalars.

For example, a (monic) conic (n = 2), cubic (n = 3),

and quartic (n = 4) curve can be (line) decomposed as

f2ðx; yÞ ¼ L1ðx; yÞL2ðx; yÞ þ a ¼ 0;

f3ðx; yÞ ¼ L1ðx; yÞL2ðx; yÞL3ðx; yÞ þ aL4ðx; yÞ ¼ 0;

and

f4ðx; yÞ ¼ L1ðx; yÞL2ðx; yÞL3ðx; yÞL4ðx; yÞ
þ aL5ðx; yÞL6ðx; yÞ þ b

¼ 0; ð13Þ

respectively, where a and b are real scalars.

In the sequel, we will focus on quartic curves.

4.1 Algebraic affine invariants using canonical curves

Consider a line decomposed quartic curve as in (13). For

closed-bounded curves, L1(x, y), ..., L4(x, y) will form two

pairs of complex-conjugate lines, namely {L1, L2 = L1
*}

and {L3, L4 = L3
*}. The intersection of complex-conjugate

lines will be two real points, p1 = (x1, y1) and p2 =

(x2, y2). The remaining two lines, L5(x, y) and L6(x, y), can

be either real or complex-conjugate, but their intersection

will be a third real point, p3 = (x3, y3). When the curve

undergoes an affine transformation all the lines map to the

corresponding lines in the transformed curve. The same

correspondence holds for intersection points. Such inter-

section points are termed ‘‘related-points’’ in [29, 31].

These related points motivate introduction of canonical

curves as follows:

Assume f4(x, y) = 0 and �f4ðx; yÞ ¼ 0 are affine equiva-

lent quartic algebraic curves. Let the mappings of three

points of f4(x, y) = 0 to the corresponding related points of
�f4ðx; yÞ ¼ 0, be described by

ðxi; yiÞ�!
A ð�xi; �yiÞ i ¼ 1; 2; 3:

This mapping defines the affine transformation matrix A

via the relation

x1 x2 x3

y1 y2 y3

1 1 1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼D T

¼ A
�x1 �x2 �x3

�y1 �y2 �y3

1 1 1

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼D �T

¼) A ¼ T �T�1:

ð14Þ

Note that three such related points of f4(x, y) = 0

defines a canonical transformation matrix

Ac¼
D

x1 � x3 x2 � x3 x3

y1 � y3 y2 � y3 y3

0 0 1

0
@

1
A ð15Þ

and a corresponding monic (a4,0 = 1) canonical curve

f4
c(x, y) = 0 of f4(x, y) = 0 defined by the relation

f4ðx; yÞ ¼ 0�!Ac
scf c

4 ðx; yÞ ¼ 0; ð16Þ

for some scalar sc. Three corresponding related points of
�f4ðx; yÞ ¼ 0 will define a corresponding canonical

transformation matrix

456 Pattern Anal Applic (2010) 13:451–468

123

�Ac¼
D

�x1 � �x3 �x2 � �x3 �x3

�y1 � �y3 �y2 � �y3 �y3

0 0 1

0
@

1
A ð17Þ

and a corresponding monic canonical curve �f c
4 ðx; yÞ ¼ 0 of

�f4ðx; yÞ ¼ 0 defined by the relation

�f4ðx; yÞ ¼ 0�!Ac
�sc

�f c
4 ðx; yÞ ¼ 0; ð18Þ

for some scalar �sc.

Theorem 3 [29] The implicit polynomial curves

f4(x, y) = 0 and �f4ðx; yÞ ¼ 0 will be affine equivalent if and

only if their (monic) canonical curves f4
c(x, y) = 0 and

�f c
4 ðx; yÞ ¼ 0 are the same, in which case the affine trans-

formation matrix is given by A ¼ Ac
�A�1

c .

Curve decomposition is detailed in [31]. After decom-

posing the curves, related-points can easily be determined

as the real intersection points of the lines. These points will

imply canonical transformation matrices defined by (15)

and (17) and the corresponding canonical curves defined by

(16) and (18), respectively. Therefore, we can associate a

canonical curve with each projection curve. Since Theorem

2 establishes the fact that affine equivalent curves have the

same canonical curve, all the coefficients of a canonical

curve will be algebraic invariants, and therefore a vector of

algebraic invariants can be constructed from them.

To be more specific, let

f c
4 x; yð Þ ¼ ac

40x4 þ ac
31x3yþ � � � þ ac

00

be monic such that a40
c = 1. The vector

ac
40 ¼ 1½ �; ac

31; . . .; ac
00

� �

represents a set of algebraic invariants.

4.2 Geometric affine invariants using distance ratios

A monic (an,0 = 1) algebraic curve of degree n has

n(n ? 3)/2 independent coefficients and therefore will have

at least n(n ? 3)/2 - 6 functionally independent invariants

under the affine group [21]. Note that affine group has six

transformation parameters. For example, a quartic curve

(n = 4) has 14 independent coefficients, and therefore it

has at least eight affine invariants.

Line decomposition of a quartic curve will imply that

f4ðx; yÞ ¼ L1ðx; yÞL2ðx; yÞL3ðx; yÞL4ðx; yÞ
þ aL5ðx; yÞL6ðx; yÞ þ b

¼ 0;

with a and b representing 2 independent scalar invariants.

In this case, the counting argument will imply at least

14 - 6 - 2 = 6 additional affine invariants. Next, we will

show how to construct these invariants.

First of all, lines in the decomposition of the curve can be

ordered based on the real and imaginary parts of their

parameters. Therefore, we can assume without loss of gen-

erality that the lines are ordered. First three lines L1(x, y) = 0,

L2(x, y) = 0, and L3(x, y) = 0 define what we call a ‘‘base

triangle’’. L4(x, y) = 0, L5(x, y) = 0, and L6(x, y) = 0 will

intersect the lines L1(x, y) = 0, L2(x, y) = 0, and L3(x, y) =

0. The lines L4(x, y) = 0, L5(x, y) = 0, and L6(x, y) = 0 are

called ‘‘transversals’’ of the base triangle (see Fig. 2).

The x and y coordinates of the intersection point P of

any two non-parallel complex lines will in general be

complex numbers of the form

x ¼ aþ bi; y ¼ cþ di

The distance between two points with generally complex

coordinates, P = (a1 ? ib1, c1 ? id1) and Q = (a2 ? ib2,

c2 ? id2), is given by

jjðQ�PÞjj¼D jQPj ¼ jPQj

¼
ffi
ða2� a1Þ2þ ðb2� b1Þ2þ ðc2� c1Þ2þ ðd2� d1Þ2

q
�0

ð19Þ

Menelaus’ Theorem [31] states that the product of ratios

of distances measured from the intersection points to the

corners of the triangle is 1, namely

jP34P23j
jP34P13j

jP14P13j
jP14P12j

jP24P12j
jP24P23j

¼ 1 ð20Þ

Since the product of three distance ratios is 1, one of them

can be determined automatically if the remaining two are

specified. In general there is no constraint on these two

distance ratios, and therefore they will be independent of each

other. Since the distance ratio on a line is an affine invariant,

L
1

L
2

L
3

L
4

P
13

P
23

P
12

P
24

P
14

P
34

Transversal

Fig. 2 A base triangle defined by L1, L2, and L3 and its transversal L4

Pattern Anal Applic (2010) 13:451–468 457

123

the first transversal L4(x, y) = 0 will imply two independent

affine distance ratio invariants relative to the base triangle.

The other two lines, L5(x, y) = 0 and L6(x, y) = 0, will each

define two more independent ratio invariants, hence giving a

total of six affine invariants as noted above. To be more

specific, for the quartic (n = 4) case, the vector

jP34P23j
jP34P13j

;
jP14P13j
jP14P12j

;
jP35P23j
jP35P13j

;
jP15P13j
jP15P12j

;
jP36P23j
jP36P13j

;
jP16P13j
jP16P12j

� �

represents a set of geometric invariants, where Pij repre-

sents the intersection of the ith line with the jth one,

i, j [{1, ..., 6}.

4.3 Comparison of invariant vectors

Algebraic/geometric invariants of a curve can be concate-

nated to form a vector called ‘‘invariant vector’’. To

compare two invariant vectors, the cosine of the angle

between invariant vectors can be used as a similarity

measure. The more this value is closer to one, the more

similar invariant vectors are. More precisely,

cosðhÞ ¼ ha; bikakkbk ð21Þ

where h is the angle between two invariant vectors, h.,.i
denotes the inner product, ||.|| denotes the Euclidean norm, and

a and b are the invariant vectors of the two projection curves.

Let

MatchGradePointClouds arrInvs1; arrInvs2
� �

ð22Þ

be a procedure that computes the similarity between two

input vectors arrInvs1and arrInvs2. We use this procedure

in a matching grades routine for arrays of invariants, which

is described in Algorithm 2.

4.4 Distance between invariant matrices

Let A and B be two m 9 n matrices of invariants.

Define the distance between these two matrices of invari-

ants as

Xm

i¼1

Xn

j¼1

Aij � Bij

Aij

þ Bij

: ð23Þ

We will use the notation

MatchGradeTessellation mtrxInvs1;mtrxInvs2
� �

ð24Þ

for a procedure that computes the distance between two

input vectors mtrxInvs1 and mtrxInvs2 as defined in

Eq. (23).

4.5 Object comparison algorithm

In this section we deep into the details of comparison of

invariants. The main comparison algorithm is described in

Algorithm 5. Several necessary routines are defined in

Algorithms 3 and 4.

458 Pattern Anal Applic (2010) 13:451–468

123

5 Experimental results and discussions

In this section we present several experiments. We differ-

entiate between moderately complicated structures and

relatively complicated objects. In addition, the moderately

complicated objects are grouped into classes that have

relative small number of members, while the more com-

plicated ones are included in large classes. In particular, we

consider moderately complicated objects defined by clouds

of points, while the relatively complicated objects repre-

sented by tessellated models, which are included in widely

accessible large databases of objects, such as Princeton

[41] and McGill [42] 3D shape benchmarks.

5.1 Experiments with objects represented by cloud

of points

In these experiments we employ 3D surface fitting. 3D

objects defined by clouds of points are modeled by fourth

degree algebraic surfaces and then projection curves are

extracted for comparison purposes.

5.1.1 Experiments with objects from different classes

Several experiments are performed for invariant recognition

of 3D objects represented by implicit algebraic surfaces.

Object pose is changed by applying randomly selected

Euclidean transformations to 3D object data. The original

and the transformed data are normalized and fitted by fourth

degree (quartic) algebraic surfaces [27]. Principal axes are

then calculated from the resulting surface data although

they can directly be computed from raw 3D data. Seven

principal planes, with 0.1 unit distance apart and orthogonal

to the principal axis with the largest eigenvalue, i.e. the

primary principle axis, are used to construct cross-section

curves of the surfaces. One of the planes is selected to be at

the center and the remaining ones are placed uniformly

around the center (three on each side of the center). In

principle, one can use any number of such planes for gen-

erating projection curves, but seven of them are sufficient

for performing invariant computations. Since more than one

projection curve is employed, the average similarity is

computed and employed for object comparison.

The sample objects used in our experiments are depicted

in Fig. 3. Figures 4, 5, and 6 show three example objects,

their fourth degree algebraic surface models with the

principal axes, v1, v2, and v3, computed, and seven cross

section and projection curves.

Results of various experiments are tabulated in Table 1.

First two columns in the table show sample objects and the

type of invariants, algebraic or geometric, used for simi-

larity computation. The next column shows average simi-

larities in the noise-free case, where each object is subject

to a random Euclidean transformation and is compared

with its transformed version based on average similarity of

affine invariants of its projection curves. Next two columns

in the table indicate average similarities in two different

noisy scenarios, where each object is subject to a random

Euclidean transformation and corrupted by a Gaussian

noise with specified variances, r2 = 0.0025 and r2 = 0.01,

and then compared with its transformed version based on

Fig. 3 Sample objects used in

our experiments: Duck, bottle,

venus, patella bone, mannequin,

balljoint, phone, apple, heart,

and pear

Pattern Anal Applic (2010) 13:451–468 459

123

average similarity of affine invariants of its projection

curves. Similarly, the next two columns show average

similarities in two different missing data situations, where

each object is subject to a random Euclidean transforma-

tion and a certain percentage, 10 and 20%, of object data

are randomly discarded, and then compared with its

transformed version based on average similarity of affine

invariants of its projection curves. Finally, the last column

in the table shows average similarities for the case, where

each object is re-sampled by throwing half of the points.

The resulting objects are each subject to a random

Euclidean transformation and then fitted by algebraic sur-

faces. Their projection curves are computed and compared

based on average similarity of their affine invariants.

Analysis of Table 1 reveals several important facts. In

the noise-free case object self-comparisons imply average

similarities near one, both for algebraic and geometric

invariants, which is what we expect. In other cases, where

objects are subject to data perturbations, average similar-

ities are relatively robust although they might assume

quite different values for algebraic and geometric invari-

ants. To see how well these similarities can discriminate

different objects, comparisons have also been made for

different objects. A test object, phone, is compared with

10 different model objects in our database and results are

tabulated in Table 2. Note that the average similarity for

phone objects is very close to one, and far below one for

the phone and other objects. Figure 7 depicts these

Fig. 5 a Apple data, b apple fit

with axes, and c cross section

and projection curves

Fig. 6 a Pear data, b pear fit

with axes, and c cross section

and projection curves

Fig. 4 a Phone data, b phone fit

with axes, and c cross section

and projection curves

460 Pattern Anal Applic (2010) 13:451–468

123

Table 1 Average similarities of

algebraic and geometric

invariants for different objects

subject to random Euclidean

transformations and various

data perturbations

Noiseless r2 = 0.0025 r2 = 0.01 %10 %20 Re-sampled

Phone

Algebraic 0.9995 0.9972 0.9618 0.9976 0.7909 0.9999

Geometric 0.9989 0.9998 0.9944 0.9985 0.9936 0.9999

Apple

Algebraic 0.9980 0.9874 0.7036 0.9985 0.9964 0.7190

Geometric 0.9996 0.9985 0.9894 0.9998 0.9963 0.9995

Pear

Algebraic 0.9999 0.9957 0.9333 0.9475 0.8402 0.9861

Geometric 0.9828 0.9776 0.8368 0.9772 0.9328 0.9808

Heart

Algebraic 0.9837 0.9044 0.8794 0.8427 0.8649 0.4961

Geometric 0.9664 0.8712 0.8763 0.9323 0.9516 0.9639

Patella

Algebraic 0.9370 0.8898 0.8219 0.9929 0.9870 0.9679

Geometric 0.9988 0.9536 0.7575 0.9927 0.7858 0.9357

Bottle

Algebraic 0.9987 0.9956 0.9919 0.9866 0.9403 0.9238

Geometric 0.9995 0.9989 0.9978 0.9936 0.9640 0.9746

Venus

Algebraic 0.9917 0.9998 0.8193 0.9907 0.9885 0.8312

Geometric 0.9844 0.9998 0.9691 0.9884 0.9749 0.8672

Mannequin

Algebraic 0.9939 0.9929 0.9899 0.9795 0.9681 0.9837

Geometric 0.9990 0.9980 0.7005 0.9301 0.8298 0.7576

Duck

Algebraic 0.9970 0.9942 0.9875 0.9730 0.8038 0.9912

Geometric 0.9713 0.8181 0.7244 0.9684 0.9014 0.9950

Balljoint

Algebraic 0.9433 0.9798 0.9695 0.9642 0.8569 0.9756

Geometric 0.9369 0.8719 0.7623 0.8436 0.7359 0.9394

Table 2 A test object (phone) has been compared with model objects

in the database based on average similarities of invariant vectors

Model objects

Test object (phone)

Algebraic Geometric

Phone 0.9764 0.9994

Apple 0.3232 0.6337

Heart 0.5980 0.6491

Pear -0.0339 0.4938

Duck 0.5338 0.5034

Bottle 0.6809 0.4939

Venus 0.6429 0.2894

Patella 0.2268 0.6593

Mannequin -0.0147 0.5156

Balljoint 0.4864 0.6380

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

Objects

A
ve

ra
ge

 s
im

ila
rit

ie
s

Fig. 7 Test object is the phone. Model objects are: 1 phone, 2 apple,

3 heart, 4 pear, 5 duck, 6 bottle, 7 venus, 8 patella, 9 mannequin, and

10 balljoint. Average similarities are plotted both for algebraic

(circle) and geometric (square) invariants, and are included in a

dotted ellipse for each object. The dotted line is a threshold value

Pattern Anal Applic (2010) 13:451–468 461

123

average similarities for the test and model objects graph-

ically. A threshold value of approximately 0.7 matches the

test object (phone) to the model object (phone) and dis-

criminates it from the remaining model objects.

5.1.2 Experiments with similar but not identical objects

To see the discrimination power of the proposed method

for similar, but not identical objects represented as cloud

of points, we have performed two sets of experiments

with head and car datasets (see Figs. 8 and 9). Tables 3

and 4 tabulate comparison of invariant vectors for these

similar, but not identical objects. Note that while identical

objects have a similarity value, for both algebraic and

geometric invariants, well above 0.9, i.e. very close to

one, similar but not identical ones have similarity values

less than this value. These experimental results show the

potential of our proposed method for within-class

recognition.

5.2 Experiments with tessellated objects

We present results of an implementation in C?? [43]. We

have used several numerical procedures from the Numerical

Recipes in C [44] library. For example, we have used the

zrhqr routine for computing roots of polynomials toward

polynomial decomposition. For visualization purposes, we

have used the VTK [45] library and Mesh View [46]. We

have run our implementation over a Core2Duo computer

equipped with two 3 GHz processors and 2 GB of memory.

We have also used VTK for 3D data processing. For

example, the quasi-convex hulls are computed employing

the vtkHull class. Following vtkHull specification [45],

vtkHull generates a hull by squeezing the planes toward the

input model, until the planes touch it, and computes the

intersection among these planes in a polyhedron repre-

sentation. For each face of the model, we compute its

normal and consider one of its boundary points. Let us call

this point a representative of the face. All representatives

Fig. 8 Female, male, and alien

heads

Fig. 9 Car frames for harrier-

hybrid, isis, prius (first row),

toyota, century, and mini-

cooper (second row),

respectively

462 Pattern Anal Applic (2010) 13:451–468

123

and normals are then given at input to vtkHull, which

computes a quasi-convex hull. We have experimented with

more initialization setups for vtkHull, however, the way

described here is the best trade-off we have found. For

clarity, we should note that vtkHull receives input faces and

computes intersections among them only.

We present part of the objects that we considered from

Princeton and McGill shape benchmarks in Fig. 10. In all

experiments performed on tessellated objects, we used

nine primary planes where the distance between them

is 0.1.

One of the differences between the McGill and Prince-

ton shape benchmark objects is the accuracy of tessellation.

The objects in Princeton shape benchmark are usually

represented by one mesh. Unlike this, the objects in McGill

are represented by adjacent surfaces that intersect each

other, i.e. several meshes approximates the surface of the

objects, see Fig. 11.

Another problem we have coped with is articulated

objects. The large variability of configurations in which

articulated objects might appear induces an inherent need

for a careful selection of objects for analysis, see

Fig. 12.

In the next sections, we show confusion matrices for

Princeton and McGill shape benchmarks. These confusion

Table 3 Comparison of test object (male1) with other objects

Test object: male1

Algebraic Geometric

Male1 0.9456 0.9952

Male2 0.8066 0.8428

Male3 0.7917 0.8121

Female1 0.6802 0.7850

Female2 0.6968 0.5101

Female3 0.6145 0.5020

Allien1 0.5897 0.3228

Allien2 0.5975 0.6277

Table 4 Comparison of test object (harrier-hybrid) with the other car

frames

Test Object: harrier-hybrid

Algebraic Geometric

Harrier-hybrid 0.9998 0.9236

Isis 0.4768 0.8037

Prius 0.9972 0.7614

Toyota 0.7802 0.7142

Century 0.2799 0.8425

Mini-cooper 0.8236 0.8144

Fig. 10 Princeton and McGill

3D shape benchmarks. Each

group of two lines represent

tessellated objects (top) and

objects superimposed with their

axes of inertia, approximations

of their convex hulls, and

intersection with principal

planes (bottom). The red, green,

and blue axes correspond to Ox,

Oy, and Oz coordinates,

respectively. The axes Ox, Oy,

and Oz are ordered in increasing

absolute eigenvalues (of the

inertia matrix) of the analyzed

objects. The intersection with

primary planes are represented

with blue contours. The primary

planes are perpendicular to Ox
axis. The tessellation models are

visualized with Mesh Viewer

[46]

Pattern Anal Applic (2010) 13:451–468 463

123

matrices are given in tables. Each presented table involves

a set of classes. For each table, on each line we consider a

certain class, of which representatives belong to the same

or other different classes. The number of objects correctly

classified are reported on the diagonals of the table. The

i, jth entry of the table represents the number of objects in

the ith class that belong to the jth one.

When classifying an object we compare its invariants

versus all other objects in various classes. We compute the

closest object in terms of distances of invariants using

Algorithm 5, which relies on Eq. (23).

5.2.1 Experiments with McGill 3D shape benchmark

objects

We present results of three experiments performed on

McGill 3D shape benchmark in Tables 5, 6, 7, 8, 9, and 10.

The McGill 3D shape benchmark divides the objects into

articulated and non-articulates super-classes. Each super-

class is further divided into sub-classes. We have chosen

less articulated classes for experiments, see also Fig. 12.

Fig. 11 Problems in tessellations of Princeton and McGill bench-

marks objects. The blue curves represent intersection of parallel

planes with the tessellation of the objects under analysis. In Princeton

objects, usually, the contours are clearly defined by a unique mesh, in

almost any region of the object, see the left image. Unlike Princeton,

McGill objects are characterized by multiple meshes, and therefore,

intersections with parallel planes consist of multiple contours, see the

set of the three images at right. The images in the right represent a full

object as well as two zoom-in regions. The two zoom-in regions

illustrate the same part of the plane body, which is represented as

wires and tessellations

Fig. 12 Problems with

articulated objects in Princeton

and McGill shape benchmarks

Table 5 Algebraic invariants-based confusion matrix computed for

three classes from McGill 3D shape benchmark

Humans Cups Fishes

Humans 9 4 4

Cups 5 9 2

Fishes 4 2 13

Table 6 Geometric invariants-based confusion matrix computed for

three classes from McGill 3D shape benchmark

Humans Cups Fishes

Humans 6 5 6

Cups 1 9 6

Fishes 6 5 8

Table 7 Algebraic invariants-based confusion matrix computed for

four classes from McGill 3D shape benchmark

Birds Cups Fishes Four

Birds 5 1 1 6

Cups 2 7 5 2

Fishes 0 2 13 4

Four 3 6 8 14

Table 8 Geometric invariants-based confusion matrix computed for

four classes from McGill 3D shape benchmark

Birds Cups Fishes Four

Birds 6 0 2 5

Cups 0 9 6 1

Fishes 1 4 10 4

Four 2 7 8 14

464 Pattern Anal Applic (2010) 13:451–468

123

5.2.2 Experiments with Princeton shape benchmark

objects

We present results of three experiments performed on

Princeton shape benchmark in Tables 11, 12, 13, 14, 15,

and 16. In these experiments, we focus on classifying sub-

classes of one super-class. In the first experiment, we

compute the confusion matrix for the car super-class (see

Tables 11 and 12). In the second experiment, we compute

the confusion matrix for the air-vehicle super-class (see

Tables 13 and 14). In the third experiment, we compute the

confusion matrix for several classes that might be consid-

ered part of the super-class vehicle (see Tables 15 and 16).

Table 9 Algebraic invariants-based confusion matrix computed for various classes from McGill 3D shape benchmark

Ants Humans Airplanes Birds Cups Dolphins Fishes Four Tables

Ants 2 3 1 1 1 1 0 0 0

Humans 4 4 1 1 2 0 2 3 0

Airplanes 1 1 7 0 4 0 4 1 1

Birds 2 1 0 4 0 1 0 3 2

Cups 2 2 1 0 5 1 2 2 1

Dolphins 0 3 0 0 2 2 3 1 0

Fishes 0 1 0 0 1 3 10 3 1

Four 1 5 1 1 4 2 6 9 2

Tables 1 2 2 2 3 1 1 0 6

Table 11 Algebraic invariants-based confusion matrix computed for

the car super-class from Princeton shape benchmark

Race-car Sedan Sports-car

Race-car 9 2 3

Sedan 2 14 4

Sports-car 4 7 1

Table 12 Geometric invariants-based confusion matrix computed for

the car super-class from Princeton shape benchmark

Race-car Sedan Sports-car

Race-car 3 8 3

Sedan 3 15 2

Sports-car 1 6 5

Table 13 Algebraic invariants-based confusion matrix computed for

the air vehicle super-class from Princeton shape benchmark

Dirigible Hot-air-balloon

Dirigible 5 1

Hot-air-balloon 1 5

Table 14 Geometric invariants-based confusion matrix computed for

the air vehicle super-class from Princeton shape benchmark

Dirigible Hot-air-balloon

Dirigible 3 3

Hot-air-balloon 1 5

Table 10 Geometric invariants-based confusion matrix computed for various classes from McGill 3D shape benchmark

Ants Humans Airplanes Birds Cups Dolphins Fishes Four Tables

Ants 3 0 1 0 0 0 0 2 3

Humans 1 1 4 0 0 0 3 5 3

Airplanes 0 1 7 0 1 1 1 4 4

Birds 1 2 2 4 0 0 2 0 2

Cups 0 0 1 0 8 1 4 0 2

Dolphins 0 3 1 0 1 2 1 0 3

Fishes 0 4 3 0 3 0 6 3 0

Four 0 7 4 0 2 1 6 10 1

Tables 0 2 6 2 2 0 0 4 2

Pattern Anal Applic (2010) 13:451–468 465

123

5.3 Implementation details and time performance

analysis

We divide the whole processing into three stages and

provide time performance analysis for each one of them.

We report time requirements for polynomial fitting, poly-

nomial decomposition, as well as invariants extraction.

We depict average time performance of polynomial

fitting algorithm [28] in Fig. 13. In Fig. 13, we plot the time

spent for generating polynomials of degree 4, 6, 8, and 10

depending on the number of points at input. These numbers

range from 20 to over 2,000. We present time consumption

for polynomial decomposition and invariants extraction in

Fig. 14. In Fig. 14, we show the time performance analysis

for fitted polynomials of degrees 4, 6, 8, and 10.

We considered polynomials of degree 4, 6, 8, and 10

since these polynomials are the most practical ones and

usually present the best trade-off between the accuracy of

Table 15 Algebraic invariants-based confusion matrix computed for the vehicle super-class from Princeton shape benchmark

Antique car Bicycle Dirigible Hot air balloon Military tank Race car Sedan Sports car

Antique-car 1 1 0 0 0 2 1 0

Bicycle 0 1 0 0 2 0 1 1

Dirigible 0 0 4 1 0 0 1 0

Hot-air-balloon 0 0 1 4 1 0 0 0

Military-tank 0 1 1 0 5 2 5 2

Race-car 1 0 0 0 2 8 1 2

Sedan 0 0 0 0 4 2 8 6

Sports-car 0 0 0 0 3 4 7 4

Table 16 Geometric invariants-based confusion matrix computed for the vehicle super-class from Princeton shape benchmark

Antique car Bicycle Dirigible Hot-air-balloon Military tank Race car Sedan Sports car

Antique-car 1 0 0 0 1 1 0 2

Bicycle 1 0 0 0 1 2 0 1

Dirigible 0 0 2 4 0 0 0 0

Hot-air-balloon 0 0 1 4 1 0 0 0

Military-tank 0 0 0 0 7 2 5 2

Race-car 0 0 0 0 6 1 4 3

Sedan 0 0 0 0 7 2 8 3

Sports-car 0 0 0 0 4 1 6 7

Fig. 13 Polynomial fitting times Fig. 14 Polynomial decomposition and invariants extraction times

466 Pattern Anal Applic (2010) 13:451–468

123

computations and the time consumption. To the best of our

knowledge, our time performance analysis is the first seri-

ous evaluation presented for a polynomial fitting algorithm,

being performed in a framework of C?? implementation.

Moreover, it is the first serious time performance analysis

for the proposed polynomial decomposition as well as the

invariants extraction.

While many classification and recognition schemes are

characterized by complex searches in exponential graphs

of configurations, see for example [15, 16], our scheme is

fast and does not involve such heavy computations.

However, one of the limitations of our scheme is articu-

lated objects.

6 Conclusions

We have presented a new technique for recognizing 3D

objects described by algebraic surfaces using affine

invariants of their projection curves. The proposed method

explicitly constructs robust algebraic and geometric

invariants for projection curves and therefore eliminates

the need for finding and computing geometric invariants of

3D surfaces, which is a non-trivial task. Our particular

treatment based on algebraic curve decompositions pro-

vides significant new insight about invariants. Unlike the

more classical algebraic invariants, the geometric invari-

ants obtained here have a natural interpretation in terms of

distances. Therefore, one can apply several different mea-

sures when comparing such invariants. Moreover, in terms

of time performance, our algorithm is fast when compared

to existing algorithms.

Experiments with cloud of points and tessellated objects

have been performed in order to evaluate the utility of

affine invariants of projection curves for object recognition.

The robustness of such invariants has been assessed with

several noisy, missing, and re-sampled datasets. In addi-

tion, time performance analysis has been performed for

evaluating various stages of computation. While our

method is very fast, it has limitations when applied to

articulated objects. However, it can easily handle arbitrary

pose variations since it is based on invariants.

References

1. Costa MS, Shapiro LG (2000) 3D object recognition and pose

with relational indexing. Comput Vis Image Underst 79(3):364–

407

2. Forsyth DA, Ponce J (2003) Computer vision: a modern

approach. Prentice Hall

3. Gonzalez E, Adan A, Feliu V, Sanchez L (2008) Active object

recognition based on Fourier descriptors clustering. Pattern

Recognit Lett 29(8):1060–1071

4. Kim S, Kweon IS (2008) Scalable representation for 3D object

recognition using feature sharing and view clustering. Pattern

Recognit 41(2):754–773

5. Rothganger F, Lazebnik S, Schmid C, Ponce J (2006) 3D object

modeling and recognition using local affine-invariant image

descriptors and multi-view spatial constraints. Int J Comput Vis

66(3):231–259

6. Lee TK, Drew MS (2007) 3D object recognition by eigen-scale-

space of contours. In: First international conference on scale

space methods and variational methods in computer vision

(SSVM’07), pp 883–894

7. Li W, Bebis G, Bourbakis N (2004) Integrating algebraic func-

tions of views with indexing and learning for 3D object recog-

nition. In: Computer vision and pattern recognition workshop,

p 102, June 2004

8. Nagabhushan P, Guru DS, Shekar BH (2006) Visual learning and

recognition of 3D objects using two-dimensional principal com-

ponent analysis: a robust and an efficient approach. Pattern

Recognit 39(4):721–725

9. Chen H, Bhanu B (2007) 3D free-form object recognition in

range images using local surface patches. Pattern Recognit Lett

28(10):1252–1262

10. Mian AS, Bennamoun M, Owens R (2006) Three-dimensional

model-based object recognition and segmentation in clut-

tered scenes. IEEE Trans Pattern Anal Mach Intell 28(10):1584–

1601

11. Diplaros A, Gevers T, Patras I (2006) Combining color and shape

Information for illumination-viewpoint invariant object recogni-

tion. IEEE Trans Image Process 15(1):1–11

12. Shotton J, Blake A, Cipolla R (2008) Multiscale categorical

object recognition using contour fragments. IEEE Trans Pattern

Anal Mach Intell 30(7):1270–1281

13. Adan A, Adan M (2004) A flexible similarity measure for 3D

shapes recognition. IEEE Trans Pattern Anal Mach Intell

26(11):1507–1520

14. Shan Y, Sawhney HS, Matei B, Kumar R (2006) Shapeme his-

togram projection and matching for partial object recognition.

IEEE Trans Pattern Anal Mach Intell 28(4):568–577

15. Pechuk M, Soldea O, Rivlin E (2008) Learning function based

classification from 3D imagery. Comput Vis Image Underst

110(2):173–191

16. Froimovich G, Rivlin E, Shimshoni I, Soldea O (2007) Efficient

search and verification for function based classification from real

range images. Comput Vis Image Underst 105(3):200–217

17. Taubin G, Cooper DB (1992) 2D and 3D object recognition and

positioning with algebraic invariants and covariants. In: Chapter

6 of Symbolic and numerical computation for artificial intelli-

gence. Academic Press

18. Huang ZH, Cohen FS (1996) Affine invariant B-spline moments

for curve matching. Image Process 5(10):1473–1480

19. Solina F, Bajcsy R (1990) Recovery of parametric models from

range images: The case for superquadrics with global deforma-

tions. IEEE Trans Pattern Anal Mach Intell 12(2):131–147

20. Ma S (1993) Conics-based stereo, motion estimation and pose

determination. IJCV 10(1):7–25

21. Mundy JL, Zisserman A (1992) Geometric invariance in com-

puter vision. The MIT Press

22. Calabi E, Olver PJ, Shakiban C, Tannenbaum A, Haker S (1998)

Differential and numerically invariant signature curves applied to

object recognition. IJCV 26(2):107–135

23. Wu MF, Sheu HT (1998) Representation of 3D surfaces by two-

variable Fourier descriptors. IEEE Trans Pattern Anal Mach Intell

20(8):583–588

24. Taubin G, Cukierman F, Sullivan S, Ponce J, Kriegman DJ

(1994) Parameterized families of polynomials for bounded

algebraic curve and surface fitting. IEEE PAMI 16:287–303

Pattern Anal Applic (2010) 13:451–468 467

123

25. Keren D, Cooper DB, Subrahmonia J (1994) Describing com-

plicated objects by implicit polynomials. IEEE Trans Pattern

Anal Mach Intell 16:38–53

26. Sahin T, Unel M (2005) Fitting globally stabilized algebraic

surfaces to range data. In: 10th IEEE international conference on

computer vision (ICCV’05), October 2005

27. Sahin T, Unel M (2008) Stable algebraic surfaces for 3D object

representation. J Math Imaging Vis 32(2):127–137

28. Sahin T, Unel M (2004) Globally stabilized 3L curve fitting. In:

Lecture notes in computer science (LNCS-3211), pp 495–502.

Springer

29. Wolovich W, Unel M (1998) The determination of implicit

polynomial canonical curves. IEEE Trans Pattern Analysis Mach

Intell 20(10):1080–1089

30. Unel M, Wolovich WA (1999) A new representation for quartic

curves and complete sets of geometric invariants. Int J Pattern

Recognit Artif Intell 13(8):1137–1149

31. Unel M, Wolovich WA (2000) On the construction of complete

sets of geometric invariants for algebraic curves. Adv Appl Math

24(1):65–87

32. Subrahmonia J, Cooper DB, Keren D (1996) Practical reliable

bayesian recognition of 2D and 3D objects using implicit poly-

nomials and algebraic invariants. IEEE Trans Pattern Anal Mach

Intell 18(5):505–519

33. Vijayakumar B, Kriegman DJ, Ponce J (1995) Invariant-based

recognition of complex curved 3D objects from image contours.

In: International conference on computer vision, Boston, MA

34. Wolovich W, Albakri H, Yalcin H (2002) The precise modeling

and measurement of free-form surfaces. J Manuf Sci Eng 2002

35. Keren D (1994) Using symbolic computation to find algebraic

invariants. IEEE Trans Pattern Anal Mach Intell 16(11): 1143–

1149

36. Strang G (1998) Introduction to linear algebra. Wellesley-

Cambridge Press

37. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley

38. Sheynin SA, Tuzikov AV (2003) Moment computation for

objects with spline curve boundary. IEEE Trans Pattern Anal

Mach Intell 25(10): 1317–1322

39. Faber P, Fischer RB (2001) Pros and cons of Euclidean fitting. In:

Proceedings of annual German symposium for pattern recogni-

tion (DAGM01, Munich). Springer LNCS 2191, Berlin, pp 414–

420, Sep 2001

40. Blane M, Lei Z et al (2000) The 3L algorithm for fitting implicit

polynomial curves and surfaces to data. IEEE Trans Pattern Anal

Mach Intell 22(3):298–313

41. Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The

Princeton Shape Benchmark, Shape Modeling International,

Genova, Italy, June 2004

42. Zhang J, Siddiqi K, Macrini D, Shokoufandeh A, Dickinson S

(2005) Retrieving articulated 3-D models using medial surfaces

and their graph spectra. In: International workshop On energy

minimization methods in computer vision and pattern recognition

43. Stroustrup B (2000) The C?? programming language, special

edn. Addison Wesley, Reading, Mass

44. Numerical Recipes (2007) The art of scientific computing, 3rd

edn. Cambridge University Press, ISBN-10: 0521880688

45. Kitware Inc (2009) The visualization toolkit. http://www.vtk.org/

46. Viewer M (2009) http://mview.sourceforge.net/

468 Pattern Anal Applic (2010) 13:451–468

123

http://www.vtk.org/
http://mview.sourceforge.net/

	3D object recognition using invariants of 2D projection curves
	Abstract
	Introduction
	Summary of existing related work
	An overview of our method

	Cross sections of an object and projection curves
	Affine equivalent projection curves
	Projection curves obtained from primary cross sections
	Primary cross sections: the cloud of points case
	Primary cross sections: the tessellation case

	Modeling object boundaries using algebraic representations
	Obtaining projection curves by fitting algebraic surfaces
	Obtaining projection curves through fitting algebraic curves to the cross sections of tessellations

	Affine invariants of algebraic curves
	Algebraic affine invariants using canonical curves
	Geometric affine invariants using distance ratios
	Comparison of invariant vectors
	Distance between invariant matrices
	Object comparison algorithm

	Experimental results and discussions
	Experiments with objects represented by cloud of points
	Experiments with objects from different classes
	Experiments with similar but not identical objects

	Experiments with tessellated objects
	Experiments with McGill 3D shape benchmark objects
	Experiments with Princeton shape benchmark objects

	Implementation details and time performance analysis

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

