RADIOMICS LUS TRANSFORMER FOR LIVER TUMOUR SEGMENTATION
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ABSTRACT

Accurately segmenting liver tumours in laparoscopic ultra-
sonography (LUS) is critical for computer-assisted interven-
tion guidance with augmented reality (AR). However, LUS
images are often degraded by speckle noise, low contrast, and
acoustic artifacts, while the liver’s complex anatomy and tu-
mour heterogeneity further complicate segmentation. These
challenges are exacerbated by the probe’s limited field of view
and restricted manoeuvrability, which frequently produce par-
tial or inconsistent tumour appearances across frames. More-
over, isoechoic tumours exhibit echogenicity similar to the
surrounding liver tissue, rendering them nearly invisible in
individual frames. To address these limitations, we propose
RadioLUS, a hybrid deep-learning framework that operates
on sequences of LUS frames. It integrates hierarchical vi-
sual features from a Swin-UNet backbone with handcrafted
radiomics descriptors that capture speckle, texture, and shape
characteristics. By aggregating temporal information across
frames, the framework enhances weak tumour boundaries and
improves the detection of subtle tissue variations. Experimen-
tal results demonstrate that Radi oLUS outperforms the state-
of-the-art under challenging LUS imaging conditions.

Index Terms— laparoscopic ultrasound, tumour, seg-
mentation, transformer, speckle, texture, shape

1. INTRODUCTION

Precisely localising tumours is essential in laparoscopic and
robot-assisted liver surgery. Laparoscopic ultrasonography
(LUS), which provides real-time intraoperative imaging, is
increasingly used in this respect [1]. LUS images may how-
ever be challenging to interpret and tumours difficult to keep
track of. It is thus be desirable to develop specific computer-
assisted intervention means [2]. The task at end is automatic
liver tumour segmentation in LUS. It is highly challeng-
ing due to the combined effects of image degradation and
anatomical variability: LUS images are affected by speckle
noise, low contrast, and acoustic artifacts that obscure tumour
boundaries [3], while the liver’s complex structure and tu-
mour heterogeneity in size, shape, and echogenicity further

complicate consistent segmentation [4]. Additional difficul-
ties arise from the LUS probe’s limited field of view and
restricted manoeuverability [5], which often cause partial
visibility and inconsistent tumour appearance across frames.
Isoechoic tumours pose an especially severe challenge: their
echogenicity closely matches the parenchyma’s, rendering
them nearly invisible in individual frames. These tumours
are only visible via subtle variations in texture and speckle
patterns discernible across consecutive frames [6].

The state-of-the-art is achieved by deep learning. The
current methods typically rely on single-frame analysis [7,
8, 9, 10] and struggle with frame-level noise, weak tumour
boundaries, and limited contextual information. To over-
come these limitations, we propose RadioLUS, a hybrid
deep learning framework that operates on LUS image se-
quences. RadioLUS integrates hierarchical visual features
from a Swin-UNet backbone with handcrafted radiomics de-
scriptors capturing speckle, texture, and shape characteristics.
Temporal aggregation across frames reinforces weak tumour
boundaries and enhances the visibility of subtle tissue pat-
terns, while radiomics descriptors contribute domain-specific
cues that improve segmentation accuracy and robustness.
RadioLUS achieves more reliable tumour segmentation
compared to single-frame methods and a sequence-based
Swin-UNet baseline.

2. METHODOLOGY

We give RadioLUS’ architecture. RadioLUS receives a
short temporal sequence of 7" images X € REXTXHXW 44
input, where B is the batch size, and (H, W) are the image
dimensions. The network has three main stages: (i) hier-
archical feature encoding and decoding using a Swin-UNet
backbone [10], (ii) ultrasound descriptor extraction produc-
ing spatio-temporal radiomics features [6], and (iii) multi-
stage Feature-wise Linear Modulation (FiLM) [11] condition-
ing, injecting radiomics-guided priors into the feature hierar-
chy. The final decoder yields a dense tumour probability map
Y € [07 1]B><H><W.



2.1. Hierarchical Visual Feature Extraction

The visual backbone follows a 3D extension of Swin-UNet [10],

combining windowed self-attention over space—time with
U-shaped skip connections. Let X;; € RH*W denote
the t-th grayscale ultrasound frame of sequence b, with
t € {1,...,T}. Each frame is divided into non-overlapping
patches of size s x s, which are linearly projected into D-
dimensional token embeddings:

Zpip = Wproj VeC(Pb,i,p) + Pip, (1)

where P, ; , denotes the p-th patch in tubelet %, p; ;, is a learn-
able spatio-temporal positional embedding, and Wy,.; €
RDX(s*7) i the patch projection matrix. Here, D is the
embedding dimension and 7 is the temporal tubelet length,
yielding T, = T’/ tubelets per sequence.

The patch tokens {zy; ,,} extracted from each tubelet are
reshaped into a spatial-temporal tensor F, serving as the in-
put to the hierarchical Swin-UNet encoder. The encoder is
composed of L stages indexed by ¢, each performing shifted-
window attention and patch merging to progressively model
context and build multi-scale representations:

Fo=&"F,y), (=1,...,L, )

where F, € REXTvxHexWexDe denotes the stage-¢ feature
tensor. Skip connections forward encoder features to the de-
coder to preserve boundary details and fine spatial structures.

2.2. Spatio-temporal Radiomics Descriptors Extraction

To capture the effects of texture, speckle and shape over time,
we extract spatio-temporal radiomics descriptors aligned
to the Swin token grid. For each tubelet (b,i,p), a C-
dimensional descriptor vector s;, € R® is computed by
aggregating three complementary feature families.

(i) Texture. We apply Mean Subtracted Contrast Normaliza-
tion to stabilize local contrast, followed by a neural Local
Binary Pattern operator that computes differentiable, learn-
able binary patterns [12, 13]. This combination captures fine-
grained texture and intensity co-occurrences while remaining
robust to gain and contrast variations.

(ii) Speckle. Local scattering behaviour is quantified through
envelope statistics. Within each neighborhood, the local mean
and variance are computed to characterize the speckle con-
trast, with a small term added to ensure numerical stability.
These local statistics are also used to estimate the parameters
of a Nakagami distribution [14], which models the echo enve-
lope. Here, the shape and scale parameters are derived from
the moments of the envelope, linking the local mean and vari-
ance to the distribution’s spread and average signal power.
(iii) Shape. Geometric descriptors such as compactness, ec-
centricity, and orientation are predicted from intermediate
segmentation maps [6]. Auxiliary representations (bound-
ary, signed distance, and skeleton maps) reinforce contour

smoothness, while global Zernike and Fourier descriptors
encode overall morphology.

Finally, the radiomics features are combined, by stack-
ing all descriptors to form the tensor S = {sp;,} €
RE*ToxPxC Each descriptor vector is channel-normalized
per sequence and linearly projected into the model’s embed-
ding space through a learnable transformation:

D
Thip = WradShip + brady,  Wiaa € RPXCL (3)

This produces radiomics tokens ry, ; , € R spatially aligned
with the initial Swin-UNet token grid F'y. These features are
later integrated into the encoder—decoder hierarchy via FiLM
conditioning, allowing physics-informed modulation of the
transformer activations.

2.3. Multi-stage FiLLM Conditioning

To fuse radiomics-informed cues with learnt visual represen-
tations, we apply FiILM [11] at each encoder-decoder stage.
At level /, the projected radiomics tokens ry, ; ,, are first pro-
cessed by a small multilayer perceptron to generate modula-
tion parameters:

V6 s B.ip) = MLP(rs,: ), (4)

where 4§ ; . B,,, € RP¢ define per-channel scaling and
shifting coefficients. These parameters are applied to the cor-
responding Swin feature maps by an affine transformation:

f‘e(ba Z7p) = ’yll;,i}p © Ff(b7 va) + lag’i,;ﬁ (5)

where ©® denotes element-wise multiplication. Multi-scale
conditioning allows coarse radiomics priors (e.g., global
shape and intensity statistics) to guide deeper semantic layers,
while fine-grained texture and speckle cues modulate early
representations. This stage-wise fusion aligns deep activa-
tions with ultrasound physics, improving boundary precision
and robustness under variable imaging conditions.

2.4. Decoder and Loss Formulation

The modulated feature hierarchy {F,} serves as input to
the Swin-UNet decoder, which progressively upsamples and
fuses skip-connected encoder features to recover fine spatial
details [10]. At each stage, concatenated encoder and de-
coder activations undergo windowed self-attention and patch
expansion, yielding refined representations that integrate
global context with boundary-level precision. The final de-
coder layer outputs a tumour probability map for the central
frame of each input sequence, Y}, € [0, 1]7*W. The model
parameters are optimised using a hybrid objective:

L = ApiceLDice (?, Y)+ )\BCEEBCE(?y Y), (©

where Y denotes the ground-truth segmentation mask. The
Dice term promotes overlap and the Binary Cross-Entropy
(BCE) term stabilizes training under class imbalance.



ToU 66.79%, Dice 80.09%

ToU 83.83%, Dice 91.20%

ToU 78.04%, Dice 87.66%

ToU 81.41%, Dice 89.75%  IoU 84.07%, Dice 92.15%

Fig. 1: Example results from ablation study. Green contour is the manual label, and red is the RadioLUS prediction.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Dataset and Setup

We collected 17 intraoperative LUS videos from 17 laparo-
scopic liver resections; data collection is IRB approved. All
data were obtained with informed patient consent and ap-
proval, and were fully anonymized prior to analysis. Videos
were recorded at 39 fps and temporally subsampled to 10 fps
(At = 0.1 s). Each training sample consists of a sequence
of four consecutive frames (I' = 4) representing short-term
temporal evolution of the scene. A total of 11853 frames were
manually segmented by expert surgeons and verified by con-
sensus. The data were grouped into 14 training videos (9332
frames), 1 validation video (1052 frames), and 2 test videos
(1469 frames). The frames were resized to 224 x224 and
normalised using training-set statistics. Temporal sequences
were generated online during loading to preserve frame conti-
nuity. We applied data augmentations using Albumentations,
including affine rotations (10°), translations (< 5%), elastic
and grid distortions, horizontal flips, and photometric adjust-
ments (brightness and contrast). All experiments were imple-
mented in PyTorch 2.0 with mixed-precision training and gra-
dient clipping. Optimisation used AdamW with initial learn-
ing rate 5x 1074, weight decay 1x1073, and cosine anneal-
ing scheduler. All FILM MLPs and projection weights are
trained end-to-end. The model was trained on an NVIDIA
RTX A5000 (24 GB). Inference runs at ~30 fps for 224 x 224
inputs, enabling real-time deployment in surgical workflows.
We used B = 8, s = 16, 7 = 2, base embedding D = 96,
L = 4 stages, C' = 8, Apjce = 0.6 and Agcg = 0.4.

3.2. Results and Discussion

We quantify the robustness of tumour segmentation methods
using 99% normal confidence intervals (CI) for the IoU and
Dice scores. Using a test set of size N = 1469, the confidence
intervals were estimated as p + €ggopcr = p £ 2.576 % %,
where ;1 and o denote the mean and standard deviation of
the per-image segmentation scores, respectively. These inter-
vals provide an estimate of the uncertainty associated with the
scores.

In terms of the baselines, we observe in table 1 that the

Table 1: Baseline methods (1 & €990, 7).

Model Frames ToU % Dice %

U-Net [7] Single 84.05 + 1.87 88.44 +1.75
FCN [8] Single 84.52 +1.83 88.05 £ 1.72
TransUNet [9] Single 86.32 + 1.77 89.86 + 1.74
Swin-UNet [10] Single 86.00 + 1.57 90.03 £+ 1.47
Swin-UNet Multi 86.33 + 1.48 90.89 + 1.37

single-frame Swin-UNet outperforms all other single-frame
methods, while the multi-frame Swin-UNet globally outper-
forms. We thus consider the multi-frame Swin-UNet without
radiomics descriptors as the state-of-the-art baseline. Its re-
sults are shown in the first row of the ablation result table 2.

Table 2: Ablation study for RadioLUS (i =+ €g9%cr)-

Texture Speckle Shape ‘ ToU % Dice %

- - | 86.33 4148 90.89 + 1.37
v - - 88.38 +1.49 92.59 + 1.42
- v - 87.24 +1.28 91.68 £ 1.10
- - v 87.65 + 1.70 91.92 + 1.64
v v - 88.82 +1.24 92.94 £ 1.07
v - v 89.17 + 1.40 93.24 £1.33
- v v 88.51 +1.29 9273 + 1.14
v v v \ 89.68 + 1.18 93.55 + 1.02

The ablation results quantify how each radiomics param-
eter family contributes and how they interact when fused with
the neural backbone. The visual-only baseline (Swin-UNet)
already performs well with 86.33% IoU and 90.89% Dice,
but each radiomics family is shown to bring an improvement.
Figure 1 shows an example how each radiomics feature con-
tributes. Texture descriptors give the largest single-family
gain of 1.7 pp, indicating their strong role in sharpening lo-
cal contrast and boundary cues. Shape descriptors alone also
provide a substantial boost of 1 pp, reflecting the benefit of ge-
ometric regularisation for boundary fidelity. Speckle statistics
yield smaller single-family gain of 0.8 pp but clearly comple-
ment the other features. Pairwise combinations further im-
prove performance, with shape and texture achieving 2.35 pp
gain. Finally, fusing all three families yields the largest im-



ToU 87.36%, Dice 93.25%

ToU 88.90%, Dice 94.12%

IoU 89.19%, Dice 94.29%

IoU 90.91%, Dice 95.24%  IoU 93.61%, Dice 96.70%

Fig. 2: Segmentation examples of RadioLUS. Green contour is the manual label, and red is the RadioLUS prediction.

provement of 2.66 pp. The pattern is clear: texture and shape
provide the largest, immediately useful signals for boundary
and region accuracy, while speckle adds complementary mi-
crostructural evidence that produces modest but consistent ad-
ditional improvements when integrated via our multi-stage
FiLM conditioning. The experiments show that our multi-
stage FILM fusion provides a compact, effective way to in-
ject ultrasound radiomics into transformer backbones, yield-
ing a good performance for intraoperative tumour segmenta-
tion. Figure 2 shows qualitative results for tumour segmenta-
tion in LUS images.

4. CONCLUSION

We have presented RadioLUS, a radiomics-guided video
transformer for liver tumour segmentation in LUS images. It
integrates speckle, texture, and shape descriptors via FILM
modulation, and achieves accuracy scores of Dice 93.55%
and ToU 89.68% with real-time inference (30 fps). Future
work will (i) train neural methods to achieve radiomics fea-
tures extraction with additional invariance and covariance
terms, and (ii) generalise to other organ tumours.
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