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Abstract— Most deformable object manipulation tasks still
rely on skillful human operators. To automate such tasks, a
robotic system should not only be able to deform an object to
a desired shape but also servo its deformation along a specific
path towards the desired shape. We propose a shape servoing
control scheme to automate such tasks. Our scheme controls the
deformation trajectory towards the desired shape by imposing
task-focused convergence constraints. The constraints impose
how fast the different regions of the object converge to the
desired shape. Integrating such a behavior in shape servoing
forms our main contribution. Experiments, carried out on
rubber layer assembly tasks, show that our control scheme
outperforms a state-of-the-art shape servoing scheme.

I. INTRODUCTION

The machines and robots have succeeded to automate
many tedious tasks. However, there are still some that need
to be automated effectively. Deformable object manipulation
is one of them. It has a wide range of applications, for
instance, in service robotics, surgical assistance [1], food
packaging [2] and so on. The main challenge in deformable
object manipulation is to generate the appropriate commands
to control the object’s shape. This is an open issue and it is
known as shape servoing problem [3], [4], [5]. Although
there are recent shape servoing schemes [6], [7], [8], they
are not able to satisfy convergence constraints on the way
towards the desired shape. The way to converge to the final
shape is particularly critical to accomplish fine assembly
tasks, such as the assembly of adhesive deformable surfaces.

We integrate shape convergence constraints into existing
control schemes to obtain task-focused schemes. From a
practical point of view, this should improve the manner of
producing the desired outputs for the robotized tasks. In
order to accomplish a shape servoing with convergence con-
straints, one should address the following challenges: (C1)
deformable object perception, (C2) deformation prediction,
(C3) under-actuated system control, and (C4) integration of
convergence constraints within servoing scheme.
C1, C2 are the primary challenges that each shape servo-

ing scheme should address.
Therefore, we borrow existing solutions for them from

a recent shape servoing scheme [8]. Thus, we focus only
on challenge C4. In order to solve C4, we apply optimal
control theory to encode implicitly the task-focused defor-
mation behavior on a shape servoing scheme. We use neither
trajectory nor subgoals. This will allow the robots to imitate
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the gestures of a skillful human operator on a dedicated task.
We have named our scheme Optimal Shape Servoing (OSS).
OSS scheme contributes to the state-of-the-art as follows.

(i) It allows encoding the task-focused deformation behaviour
directly into a shape servoing scheme without any trajectory
planning. The encoded behaviour imposes how fast the dif-
ferent regions of the object converge to the desired deformed
shape. (ii) It is general in terms of the manipulated object
topology, the shape perception method, and the task.

II. RELATED WORK

A. Character Animation in Computer Graphics

Animating a deformable character/object from a given
initial frame to a target frame under shape and motion
constraints (i.e., convergence constraints) is a well studied
problem in computer graphics. We are indeed inspired from
works such as [9] and [10] for our scheme.

B. Shape Servoing in Robotics

One of the first works in deformable object manipulation
is the scheme described in [11]. It computed the deformation
Jacobian of an object using the diminishing rigidity principle.
It tested the method in simulations. It did not take into ac-
count any convergence constraints. [12] manipulated a thin-
shell object. It modelled the object’s deformation using FEM.
It observed the object using a stereo camera. It controlled two
points of the object, which were LEDs tracked by the stereo
camera, in the plane. It used a closed-loop servoing scheme
with an H∞ controller. It did not take into account any
convergence constraints. However, it included loop shaping
constraints. It did not prove the control law stability.

[3] manipulated a volumetric object. It observed the object
using a monocular RGB camera. It extracted the Fourier
coefficients from the object’s contour. It controlled the con-
tour using these Fourier coefficients in the image. It used a
proportional visual-servoing controller [13] with a Jacobian
estimated online. It did not take into account any convergence
constraints. It did not prove the control law stability.

[7] manipulated thin-shell and volumetric objects. It pre-
dicted the object’s deformation using a model-free Jacobian
estimated online. It observed a point cloud of a region of
interest of the object using an RGB-D camera, and controlled
it in the 3D space. It used a closed-loop scheme with
a proportional gradient descent controller. It also used a
sliding window weighted with a forgetting criteria. It did
not take into account any convergence constraints. It proved
the control law stability.



TABLE I
STATE-OF-THE-ART COMPARISON

Object Vision Servoing Control Servoing Task-focused Task-focused
Sensor feature space scheme predefined convergence

trajectory constraints
[12], 2012 Thin-shell Stereo 2 points Plane H∞ control No No
[3], 2018 Volumetric RGB Contour Image Proportional control No No
[7], 2020 Volumetric RGB-D ROI point cloud 3D Proportional control No No
[14], 2021 Volumetric No sensor Whole shape 3D Open loop Yes No
[6], 2021 Volumetric RGB 3 points Image Adaptive control Yes No
[8], 2022 Thin-shell RGB Whole shape 3D Proportional control No No
OSS Thin-shell RGB Whole shape 3D Optimal control No Yes(

Volumetric
or Linear

) (
RGB-D

or Stereo

)

[14] manipulated a volumetric object. It modelled the
object’s deformation using Newton’s method with Differen-
tial Dynamic Programming (DDP). It modelled the object’s
geometry with a tetrahedral mesh. It did not use any vision
sensor, as its scheme was open-loop. It controlled the whole
shape of the object in the 3D space. It did not take into
account any convergence constraints but followed a trajectory
generated through the object’s deformation model.

[6] manipulated a linear, thin-shell, or volumetric object. It
predicted the object’s deformation with a Jacobian estimated
online using Function Approximation Technique [15]. It
observed the object using a monocular RGB camera. It
controlled three points of the object in the image. It used
a closed-loop scheme with an adaptive controller. It did not
take into account any convergence constraints but followed
a predetermined one. It included virtual force constraints to
improve manipulability. It proved the control law stability.

[8] manipulated a thin-shell object. It modelled the
object’s deformation using As-Rigid-As-Possible (ARAP)
method [16]. It observed the object’s shape with a Shape-
from-Template (SfT) algorithm [17] using a monocular RGB
camera. It controlled the whole shape of the object in the
3D space. It used a closed-loop scheme with a proportional
controller. It did not take into account any convergence
constraints. It did not prove the control law stability as the
scheme was strongly under-actuated.

C. Positioning OSS Scheme Compared to State-of-the-Art

To the best of authors’ knowlegde, OSS is the only shape
servoing scheme that does not require trajectory planning to
achieve a task requiring specific intermediate shapes. It does
so using the task-focused convergence constraints designed
only once. While there exist schemes which followed task-
focused predefined trajectories [14], [6] to achieve a task,
they require to replan the trajectory each time the initial
configuration changes. The OSS scheme is general. First, it
can manipulate linear, thin-shell, or volumetric objects once
a deformation Jacobian is available. Second, it can use any
perception method providing 3D shape of the object, regard-
less of the sensor type. Third, the convergence constraints
can be designed for a given specific task. Table I provides
a comparison of the state-of-the-art schemes and the OSS
scheme.

III. PROBLEM FORMULATION

A. Optimal Control over a Time Horizon

We represent the object’s shape as a mesh grid made
of nodes. Each node contains Cartesian coordinates of a
vertex. Afterwards, we use a deformation Jacobian to predict
the shape variations of the object as a function of the
end-effectors’ small displacements in quasi-static conditions.
We then write the system’s discrete time state equation as
follows:

x(k + 1) = x(k) + J(k)u(k) dt (1)

where k ∈ N is the discretized time, dt ∈ R is the time
step, x ∈ R3n is the state vector formed by nodal points’
coordinates, and n is the number of nodes in the object’s
mesh. u ∈ R6m represents the control as the stacked vector
of the velocity screws of the robots, where m is the number
of robots. J ∈ R3n×6m is the deformation Jacobian.

x =
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y1
z1
x2

y2
z2
...


3n×1

and u =



vx1

vy1

vz1
wx1

wy1

wz1
...


6m×1

(2)

We define the shape error vector e ∈ R3n as below:

e(k) = x(k)− xd(k) (3)

where xd ∈ R3n is the desired shape. Applying optimal
control theory from [18], we write the global cost E in terms
of the shape error cost and the control cost as follows:

E =

th∑
k=1

(
e⊤(k)Q(k) e(k) + u⊤(k)R(k)u(k)

)
(4)

where th ∈ N is the time horizon of our control. Q(k) ∈
R3n×3n and R(k) ∈ R6m×6m weigh the cost of the shape
error and the control, respectively. The control u minimising
E is written as:

u(k) = −K(k) e(k) (5)



with K(k) ∈ R6m×3n being defined as:

K(k) = [G⊤(k)S(k+1)G(k)+R(k+1)]−1 G⊤(k)S(k+1)
(6)

where G(k) = dt J(k) and S(k) ∈ R3n×3n is as follows:{
S(k) =S(k + 1) [1−G(k)K(k)] +Q(k)

S(th) =Q(th)
(7)

Figure 1 presents the block diagram of OSS scheme.

Fig. 1. The OSS scheme. Perception uses SfT.

Q matrix for shape constraints: The goal of Q matrix is
not to establish reaching the intermediate shapes but how fast
different regions of the object converge to the desired final
shape. It can be constant or time varying. Its task-focused
design remains a challenge and forms an open issue for future
work. In the experimental section, we set it as a constant
diagonal matrix based on the task descriptions. In the future,
we plan to learn automatically Q from the observations of a
human operator performing an industrial task.

R matrix for control constraints: It can prioritize some
rotational or translational or both degrees of freedoms (dof)
of the end-effectors of the robots over the other ones on a
specific task. For instance, one can prioritize translational
dofs on a cloth-like material shape servoing since the de-
formations are dominated mostly by the gravity and the
effects of rotational dofs would remain relatively local. The
R matrix can be constant or time varying.

Time horizon for task convergence time: The global cost
E in (4) which includes the shape error is minimized over the
time horizon. Thus the time horizon represents how fast the
task will be finished (i.e., settling time). Imposing a desired
settling time for a complex task such as the shape servoing
is not trivial with conventional control schemes (e.g., PID).
From a industrial point of view, this is a very useful property.

Jacobian J for deformation prediction: The deforma-
tion jacobian J depends on a deformation model representing
the object’s behaviour. It predicts how the object’s shape
will evolve under robots’ motion. It can be computed either
analytically or estimated on-line.

B. Algorithm

OSS scheme is detailed in algorithm 1. Line 1 starts the
shape servoing control loop to be finished up to the time
horizon. Line 2 perceives the object’s current shape. Line 3
computes the shape error. Line 4 computes only the Jacobian

Algorithm 1 OSS scheme

Inputs:
xd // Desired shape
dt // Time step (seconds)
th // Time horizon (number of iterations)
sw // Sliding window (number of iterations)
Q // Shape constraints (matrix or matrices)
R // Control constraints (matrix or matrices)

1: for k=1:th do // control loop over time horizon
2: x = PerceiveShape(object)
3: e = x - xd

4: J = ComputeDeformationJacobian(x)
5: G = dt J
6: rh = min(sw, th - k) // remaining horizon
7: S = Q(k + rh)
8: for i=1:rh do // recursive loop over sliding window
9: Ri = R(k + rh - i + 1)

10: Qi = Q(k + rh - i)
11: S = S − (SG(G⊤SG+Ri)

−1)G⊤S + Qi

12: end for
13: K = (G⊤SG+R)−1G⊤S
14: u = −K e // control law
15: MoveRobots(u)
16: end for

of the current shape. It does not compute the Jacobians of
the future shapes. Line 5 scales the Jacobian to form G
matrix. Line 6 sets the remaining horizon as the minimum
between the sliding window value and the remaining number
of iterations up the time horizon. Line 7 initializes S for the
recursive loop. Line 8 starts the recursive loop on the sliding
window for the computation of S. S is thus computed over
a shorter window rather than the longer time horizon. The
Jacobian is constant during the recursive loop. This alleviates
the computational cost. The recursive loop is also written
considering a possible time varying Q and R matrices. Line
9 sets current iteration’s R matrix. Line 10 sets current
iteration’s Q matrix. Line 11 computes recursively S. Line
12 ends the recursive loop. Line 13 computes the K matrix.
Line 14 computes the control law of the robots. Line 15
applies the control law to the robots. Line 16 ends the shape
servoing control loop.

IV. EXPERIMENTS AND RESULTS

We validated the OSS scheme with a simulated task and
one real-life task. The simulated task is shape-servoing of
a translated thin-shell mesh. It is used for convergence time
analysis. The real-life task is a rubber layer assembly. In this
task, we place a piece of rubber in prolongation of another
one that is fixed over a cylinder. In each task, we compare
OSS scheme with ARAP-Shape-Servoing (ARAP-SS) [8].

A. Simulated Task for Convergence Time Analysis

1) Simulated case: In this task, we want to prioritize
convergence of one side over the other, and of the center
over the sides. The heatmap in figure 2 illustrates the gains



Fig. 2. Heatmap of the Q matrix values on the mesh nodes.

of our Q matrix on the mesh nodes. This matrix encodes the
deformation behavior of the shape as seen in figure 3. We
will focus in this section on the effect of the time horizon
and sliding window parameters.

Fig. 3. ARAP-SS (left) and OSS schemes’ convergence shapes (right).
OSS scheme uses an encoded deformation behaviour.

2) Setup: We used an 8× 8 mesh. It is deformed by two
end-effectors grasping from the sides and moving freely. The
control frequency is set as 10Hz. Thus, the time step dt is
0.1 s. Consequently, a time horizon with 100 iterations would
correspond to 10 seconds. We set the desired shape as a
flat mesh. The initial shape is the same flat mesh translated
30 cm upward. We used ARAP to model the object and to
calculate the Jacobian. The R matrix is set as 0.001 times
an identity matrix. This choice allows maximum freedom for
the control.

3) Time horizon for task convergence time: We vary the
time horizon parameter from 10 s to 40 s in order to analyse
the task convergence times. We set the sliding window sizes
equal to the time horizons (e.g., th = sw = 10s, th = sw =
20s, and so on). The simulated results are shown in figure 4.
One can observe that the task convergence times imposed by
the time horizons are almost satisfied.

4) The impact of sliding window size: We recall that
smaller the sliding window size, faster the computation of
the control law. Therefore, we vary the sizes of the sliding
windows from th/2 to th/6 in order to analyse the relation of
the sliding window size to the task convergence time. We will
look for the best compromise between the computational cost
of the control law and the insurance of the task convergence

Fig. 4. Servoing errors versus time.

time. Figure 5 shows the simulated results to reveal the
relation between the sliding window sizes over the different
time horizons and the convergence behaviours. A ratio of
th/4 yields a good compromise between the computational
cost and the insurance of the task convergence time.

B. Rubber Layer Assembly Task

1) Industrial use case: The rubber layer is rolled around a
cylindrical support. The human operator aligns a mobile end
to a fixed one as shown in figure 6. He follows two steps: he
starts by deposing the back of the layer on the roller; then,
he deposes the front of the layer by starting with the middle
while sprawling progressively the lateral edges to match the
fixed edge. Our objective is to automate this manual task.

2) Setup: We represent the mobile piece of rubber with
a 7 × 10 mesh. To automate this task, we used two UR10
robot arms and an RGB-D camera as shown in figure 8.
We implemented the shape perception (SfT) and shape
deformation modeling (ARAP) algorithms presented in [8].
However our implementation runs on CPU while in [8] these
were partly running in GPU. Our code uses ROS in order to
reduce the transfer time from a lab experiment to industrial
application. The code runs on a PC with Ubuntu 16.0.4 LTS,
and Intel© CoreTM i7-9850H CPU @ 2.60GHz processor.
OSS scheme’s implementation runs at 5Hz on this PC.

In order to obtain the desired shape seen in figure 7, we
first aligned manually the mobile piece of rubber with the
fixed piece on a cylinder, and then measured the shape with
SfT. Although the camera is RGB-D, SfT uses only RGB.

3) Experiments: We analyzed the behaviour of the shape
servoing schemes for different initial configurations. We
tested 3 scenarios. In the first scenario, the initial configura-
tion is a translated flat shape compared to the desired shape.
In the second scenario the initial configuration is a translated
convex shape. In the third scenario, the initial configuration
is a translated concave shape.

To do so, we first formed a Q matrix with a very similar
heatmap to one shown in figure 2 to be able to replicate the
gestures of the human operator. In order to quantify the shape



Fig. 5. OSS scheme servoing error versus time for the analysis of task convergence times. Small windows zoom the last few seconds.

Fig. 6. Manual assembly of the rubber layer as it is done in the factory.

Fig. 7. Rubber layer with the perceived mesh in the desired configuration
(left). The same desired configuration from a side view (right).

servoing, we then created reference trajectories of 9 nodes.
These nodes are enumerated as 0, 3, 6, 35, 38, 41, 63, 66
and 69 in figure 7. Their trajectories are observed by SfT
while performing manually the task from an initial configu-
ration similar to the first scenario. The observed trajectories
of the 9 nodes are then used as the implicit reference
convergence behaviour for all the three scenarios regardless
of different initial shapes. Figure 10, for instance, presents
the results for the node number 35. One can observe that
OSS scheme’s node 35 performs a very similar behaviour
while ARAP-SS’ node 35 cannot.

Fig. 8. Robotic setup for the rubber layer assembly task.

4) Results: We plotted the results of the 3 scenarios in
figure 9. Each row presents the results of one scenario. The
first column shows the initial configurations. The second
column quantifies how well the nodes 0, 3 and 6 followed
their respective implicit reference convergence behaviours.
The curves represent the difference between the nodes’ tra-
jectories and their reference trajectories as explained above.
Similarly, the second and third columns quantify how well
the nodes 35, 38, 41 and 63, 66, 69 followed their respective
implicit reference convergence behaviours. Again, the curves
there represent the difference between the nodes’ trajectories
and their reference trajectories. The closer the curves to zero,
the better the scheme’s behaviour to replicate the manual
task. One can observe that OSS scheme outperforms ARAP-
SS in all scenarios. Although some spikes occurred on the
curves because of noisy shape perception, the object’s shape
was stably servoed to the desired shape.

V. CONCLUSION

We presented a shape servoing scheme performing bet-
ter than an existing state-of-the-art scheme on a real-life
industrial task. Our scheme controls reaching deformation
to a desired shape by imposing task-focused convergence
constraints. Thus, it does not require trajectory planning even
though the initial configuration changes.

As future work, we shall study (i) the shape servoing of
different objects (linear, thin-shell, volumetric) on different



Fig. 9. Trajectory errors of the nodes in 3 scenarios with th = 10 s, sw = 2 s. Video of the experiment can be watched from here.

Fig. 10. The reference trajectory error of node 35 versus time compared
with ARAP-SS and OSS schemes’ node 35 behaviours.

tasks with specific constraints, (ii) the design methods of a
Q matrix to be able encode a deformation behaviour, and
(iii) the stability proof of the scheme.
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