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Abstract— We address the monocular visual shape servoing
problem. This pushes the challenging visual servoing problem
one step further from rigid object manipulation towards de-
formable object manipulation. Explicitly, it implies deforming
the object towards a desired shape in 3D space by robots
using monocular 2D vision. We specifically concentrate on a
scheme capable of controlling large isometric deformations.
Two important open subproblems arise for implementing such
a scheme. (P1) Since it is concerned with large deforma-
tions, perception requires tracking the deformable object’s
3D shape from monocular 2D images which is a severely
underconstrained problem. (P2) Since rigid robots have fewer
degrees of freedom than a deformable object, the shape control
becomes underactuated. We propose a template-based shape
servoing scheme in which we solve these two problems. The
template allows us to both infer the object’s shape using an
improved Shape-from-Template algorithm and steer the object’s
deformation by means of the robots’ movements. We validate
the scheme via simulations and real experiments.

I. INTRODUCTION

Problem and challenges. A particular problem that has
entered into robotic terminology recently is visual shape
servoing [1]. It differs from classical visual servoing [2] by
using vision to control not only the robot’s pose but also
the object’s deformation. Monocular visual shape servoing
requires to solve two significant open problems: (P1) shape
perception and (P2) shape control [3]. Firstly, shape control
is challenging because it requires to regulate the infinite
degrees of freedom of the object’s shape with a finite number
of actuation points. Secondly, shape perception is challenging
because it requires tracking the deformable object’s 3D shape
from 2D images. A suitably accurate, robust and fast estima-
tion of the 3D shape is a key ingredient to facilitate visual
shape servoing, especially for handling large deformations.
Here, we propose a novel monocular visual shape servoing
scheme in which we solve the two problems by using the
object’s template. The template contains information about
the object’s geometry, appearance and deformation behavior.
We consider the specific case of isometric deformation,
which preserves distances. We model it using a distance-
preserving deformation law. The proposed scheme shown in
figure 1 is capable of handling large isometric deformations.
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Shape perception. We present an algorithm based on
Shape-from-Template (SfT) [4], [5]. This is a suitable choice
because for isometric deformations, SfT can provably find
the true shape [4]. We start from Particle-SfT [6], an al-
gorithm that models the object as a system of particles. A
robotic manipulation task poses specific challenges, such as
computation time constraints and occlusions. Our algorithm
improves Particle-SfT and can deal with these challenges.

Shape control. Our solution for shape control takes as in-
put the current shape and a desired shape. It uses the template
to compute a feasible interpolated 3D shape between the two
shapes. It then determines end-effector motions that move the
object towards the interpolated 3D shape.
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Fig. 1. Overview of the proposed visual shape servoing scheme.

Contribution. Our proposed scheme servos explicitly the
full shape of an object in 3D space using only a monocular
camera. Existing works for monocular shape servoing in-
stead control a reduced representation of the object encoded
by low-dimensional image-based features [1], [7]–[12]. In
addition, they consider moderate deformations. In contrast,
our scheme both tracks and servos the 3D shape in full and
across large deformations, using the template. Its servo loop
works with just a handful of image points as feedback which
makes it robust to occlusions. Furthermore, the template does
not need precise identification of the object’s mechanical
parameters. Moreover the shape tracking and servoing com-
putations of our scheme run fast.

The scheme we propose can be used in industrial sce-
narios where isometrically deforming objects (e.g., sheets
of paper/cardboard or carbon fiber, fabrics, shoe parts) are
commonplace. It only needs a monocular camera which
is the de-facto sensor in numerous applications due to its



many advantages (light-weight, small, cheap). We present
results from simulations and real experiments that validate
the usefulness of our scheme and illustrate its performance.

II. RELATED WORK

A. Deformable object tracking under robotic manipulation

We focus on works where robots interact with the tracked
object. The works [13]–[16] use an RGBD camera to track
textureless deformable objects. Particularly, [16] focused on
satisfying the requisites of a shape servoing task: principally,
fast computation and robustness to occlusion (caused by the
robots and the object). Indeed, occlusion is a major factor
that makes the tracking problem hard; an illustration of
this is [17], where two robotic hands fold an isometrically
deforming object (a paper sheet). The sheet is covered with
visual markers and multiple monocular cameras are used
to estimate the markers’ 3D poses so as to reconstruct
the shape of the sheet by means of a physics-based de-
formation model. Unlike the works above, we only need a
single monocular camera. This means we have to solve a
severely underconstrained problem. We propose to employ
an SfT algorithm. This is a reasonable option because for
isometric deformations, SfT provably infers the full true 3D
shape of the object when there are no occlusions. However,
computation time constraints and occlusions are inherent to
the scenario we consider. These challenges pose additional
difficulties for SfT. Real-time SfT systems are still not
abundant [18]. Here we improve the Particle-SfT algorithm
via several adaptations: we (i) exploit the robots-object rigid
coupling, (ii) use a properly initialized shape inference and
(iii) parallelize computations. Thanks to these adaptations
our approach is suitably fast and robust to occlusions and
thus can be used for robotic shape servoing. To our knowl-
edge, we are the first to use SfT for shape servoing.

B. Monocular shape servoing schemes

Existing works control visual features that represent the
state of the deformable object. In [7], [9] geometric features
(points, angles, distances) are controlled in the image space
by using up to six visual feedback points. [1] controls the
object’s silhouette, encoded by features that take the form of
Fourier coefficients. Similar features are used in [8] to servo
the shape of a flexible cable with dual-arm manipulation.
[10] and [11] servo a soft tissue under small deformations
controlling a set of less than five image points. The features
controlled in these approaches are a reduced representation
of the object’s geometry and do not encode its full 3D shape.
The control of the shape of a fabric using a visual feedback
dictionary defined from RGB images is proposed in [12].
The approach represents the object’s shape via photometric
features and requires offline training of the specific servoing
task. None of these methods addresses servoing of the full
3D shape over large deformations, as we propose here.

C. Non-monocular shape servoing schemes

3D sensors have been exploited to control 3D shape. [19]
employs stereo vision and controls geometric features on the

object’s surface in 3D space. The work [20] also uses a stereo
camera and servos the 3D pose of the edge of a flexible sheet.
In [21] several features (e.g., points, curves) are controlled
in 3D space using an RGBD camera. In [22] a shape feature
defined from a 3D point cloud is controlled. In comparison
with these approaches, we only require a monocular camera
to carry out shape servoing in 3D space.

D. Model-based vs. model-free deformable manipulation

The use of a model of a deformable object can allow
precise and complete control of its shape. Finite-element-
method models have been used for open-loop deforma-
tion control of elastic objects under dual-arm [23] and
in-hand [24] manipulation. The work [25] studies shape
servoing based on force feedback using a mass-spring-
damper model. [26] reviewed model-based deformable object
manipulation approaches, which generally address planning
and open-loop control. Most of the methods that address
shape servoing [1], [7]–[11], [19], [21], [22] are, instead,
model-free. They control shape features using an estimation
of a deformation Jacobian from sensor measurements. This
Jacobian expresses how the shape features change in the sen-
sor space under the robot motions. To avoid the problems of
underactuation of the controller, the vector of shape features
has a limited size and does not encode the object’s full 3D
shape. These model-free schemes avoid relevant difficulties
faced by model-based servoing, such as (i) determining the
model parameters for a given object, (ii) measuring the
object’s shape in 3D during servoing to apply the model,
and (iii) computing the model fast.

Our servoing scheme is model-based. The object’s tem-
plate is our model. However, to some extent we alleviate
the difficulties mentioned above since: (i) we do not use the
object’s mechanical parameters, (ii) a few image point mea-
surements can be enough to reconstruct the object’s shape,
and (iii) the shape estimation and deformation prediction are
computed efficiently. This allows to use the template in the
servoing loop. The template is a powerful tool to control the
object’s shape in full and in large-deformation scenarios.

III. METHODOLOGY

A. Problem setup and definitions

We consider an isometrically deforming object grasped
rigidly by m ≥ 1 robots. A fixed calibrated monocular
camera observes the object, and a template (detailed later)
of the object is known. The object’s shape is represented
by the 3D positions of n particles that form it. xi ∈ R3

denotes the position of a particle i, and we gather them all
in the shape vector x = [xT

1 , ...,x
T
n ]

T ∈ R3n. xdes ∈ R3n

denotes the desired shape. This shape is inferred from an
image (Ides) using SfT. We express object shapes always in
the camera frame. We assume the object remains in quasi-
static equilibrium, and the velocity of the end-effectors can
be set exactly with no influence from the object. The problem
addressed in this work is shape servoing: controlling the
robots so that they move x to xdes. We propose the scheme
in figure 2 to achieve this goal.
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Fig. 2. Monocular visual shape servoing scheme.

We call the set of all particles P . v(k) ⊆ P denotes the
set of particles that can be identified in the current image,
I(k). The image point in pixel units for particle i is denoted
by pi(k) ∈ R2. We denote the Cartesian frames for the
camera by Fc, the base of robot i by Fbi and its end-
effector at time k by Fei(k). We denote as Tab ∈ SE(3)
the transformation matrix expressing the pose of a frame
Fb with respect to a frame Fa. The relative poses of the
camera and robot bases are known. Each robot end-effector
fixes a planar patch of the object. The set of particles in
patch i is denoted by pi ⊂ P , and all patches’ particles
by p =

⋃m
i=1 pi ⊂ P . We assume the system starts from

an initial reference configuration where the positions of the
particles in pi are known in robot i’s end-effector frame. Let
us define the position of each of these particles as yi

j(0) ∈ R3

for j ∈ pi. These positions can then be known in the camera
frame at every instant k using the robot’s forward kinematics:
[xj(k)

T , 1]T = TcbiTbiei(k)[y
i
j(0)

T , 1]T , j ∈ pi. Finally,
from the positions of three nonaligned particles in every
patch we can compute in a direct way the associated end-
effector pose, expressed with respect to the camera frame,
for that patch. We refer to this conversion for robot i as
fi({xj , j ∈ pi}) : R3 × R3 × R3 → SE(3).

B. Scheme modules

We describe the modules of the shape servoing scheme,
seen in figure 2. We also provide Algorithms 1 and 2
detailing the shape tracking and shape control approaches.
Template. It contains the object’s texturemap, rest shape

and deformation law. One can obtain easily the texturemap
and the shape using Shape-from-Motion (SfM). If the object
is flattened, then a simple picture yields the template’s
texturemap and shape.

We impose the deformation law based on position-based
dynamics [27], [28]. This uses the rest shape xr ∈ R3n

and a mesh. The nodes of the mesh are the n particles
and each of its edges is associated with a deformation
constraint between two particles. There are two types of
constraints. The first type (A-constraints) are created by a
Delaunay triangulation of the rest shape. Therefore they
connect neighboring particles. These constraints model in-

plane shear deformation. The second type (B-constraints)
connect second-order neighbors. They model in-plane shear
deformation and out-of-plane bending, and capture curvature
effects. We denote by ε = {ij} the set of all particle pairs ij
on which constraints are defined. The deformation law we
consider is distance-preserving. It has the expression:

gij = ||xi − xj || − lij = 0, ij ∈ ε (1)

where ||·|| denotes the Euclidean norm and lij is the distance
between i and j in the rest shape. To impose the deformation
law, we move the particles with projection mappings so that
they satisfy (1). Specifically, each of the two particles moves
in the direction of the gradient of gij with respect to the
particle’s position. The gradient vectors lie on the 3D line
joining the two particles. This projection procedure has been
proposed to ensure conservation of momenta [6], [27]. It
computes the following corrections for the particles:

∆xi = −sijαi(||xi − xj || − lij)
xi − xj

||xi − xj ||
,

∆xj = sijαj(||xi − xj || − lij)
xi − xj

||xi − xj ||
, (2)

which are applied by doing xi ← xi+∆xi, xj ← xj+∆xj .
sij is a correction strength. To model an isometric deforma-
tion the values we use are sij = 1 for the A-constraints
and sij = β for the B-constraints, where 0 < β ≤ 1 is the
resistance to bending. αi and αj are scalars related with the
relative masses of the two particles. We assume all particles
have equal mass, and thus we choose an equal value of 0.5
for both scalars. The constraints are solved for all pairs in ε,
always in the same order. A constraint projection may consist
of multiple iterations of the corrections (2), where with more
iterations the model represents a stiffer object.
Shape Tracking. We first explain how we impose the

visual constraints on the object’s shape. Our reprojection
constraint is that every visible particle must lie in the line-
of-sight passing through the camera’s optical center and the
particle’s image plane projection. We impose this constraint
by moving the particle using the orthogonal projection of its
3D position onto that line. This has the following expression:

xi ← lil
T
i xi, i ∈ v(k) (3)

where li ∈ R3 is the unit vector along the line-of-sight,
computed from pi(k). Notice that this expression can be
vectorized to apply it on all particles at once.

Our shape tracking approach (Algorithm 1) improves
Particle-SfT. The main idea behind it is the application
of reprojection (3) and deformation (2) constraints on the
particles’ positions in an iterative manner until convergence
to a stable equilibrium shape. We use Root Mean Square
(RMS) of the set of n individual particle errors as metric
to determine convergence. To bound the execution time, we
also fix a maximum number of iterations. Note that the
velocities v ∈ R3n are part of the state of the particles
in the scope of the shape estimation algorithm, and do not
represent velocities at which the real object is moving. Our



main improvements to Particle-SfT in Algorithm 1 are: (i)
in line 1, we initialize tracking with the shape inferred at the
previous time instant, (ii) in line 6, we group the deformation
constraints that are isolated and solve them in parallel, and
(iii) in line 7, we enforce the known 3D positions of the
patches’ particles. (i) and (ii) increase convergence speed
considerably. (iii) is important because these positional con-
straints strongly anchor the shape, and cover regions of the
object typically occluded from the camera view. Therefore
they greatly help to track the shape fast and robustly.

The tracked 3D shape xtr(0) at time zero is inferred
without any use of a previous shape. Thus this shape takes
a longer time to infer, which is not problematic as this is
computed only once, before the actual servoing task starts.
In our current implementation we do not consider external
forces (e.g., gravity). A damping coefficient µ between 0 and
1 is applied on the velocities, aimed at avoiding oscillations
of the solution. We consider a unit time step when applying
the velocities to the particles (line 3).

Algorithm 1: Shape Tracking
Data: pi(k) ∀i ∈ v(k), Template,

xi(k) ∀i ∈ p, xtr(k − 1)
Result: Tracked shape xtr(k)

1 xtr(k) = xtr(k − 1), v = 0, j = 0
2 repeat
3 x̂ = xtr(k) + (1− µ)v
4 Reprojection constraints (3) on x̂i, ∀i ∈ v(k)
5 for l = 1 to solverIters do
6 Deformation constraints (2) on x̂
7 x̂i = xi(k) ∀i ∈ p
8 end
9 v = x̂− xtr(k)

10 xtr(k) = x̂
11 j = j + 1
12 until RMS(v) ≤ ϵ or j = maxIters
13 if xtr(k) is behind the camera then
14 xtr(k) = −xtr(k)
15 end

FSI (Feasible Shape Interpolator). Its goal is to perform
a quick (to fit within a control loop iteration) computation
of a feasible shape closer to the desired one. To this end,
FSI first computes a linearly interpolated shape between the
current and desired shapes (line 2 of Algorithm 2). Hence, in
this shape all particles get closer to their desired positions.
Then FSI imposes the deformation constraint on it (lines
3-5). The resulting feasible interpolated shape represents a
predicted shape we want the object to move towards. We
call it xpred(k). The parameter 0 < λ < 1 determines how
far forward the shape evolves. We discuss the choice of this
parameter in later sections. When closer to the goal than
a certain small ϵc, we override FSI and simply consider
xpred(k) = xdes. This reduces steady-state servoing errors.
Move Robots. This module computes a target pose for

each end-effector and moves the robots towards them (lines
9-15 in Algorithm 2). In xpred(k), the patches become

deformed because this shape is computed with no patch
position constraints. To obtain feasible target positions of
the patches’ particles we compute the rigid patches that are
optimally aligned with the deformed ones, using standard
Procrustes Superimposition (PS). These target patches (no-
tated using t) determine the target poses for the end-effectors.
We define the pose error as the translation and rotation
vectors between each end-effector frame and its target frame.
This is a classical error definition in pose control (see e.g.,
[29]). We choose it because this creates shortest-path end-
effector translations towards the target, which can prevent
sharp deformations of the manipulated object. In addition to
this we use linear saturation (sat) of the error to prevent
high accelerations of the robots. After saturation we obtain
a next (subscript ne) pose for each end-effector. We move
the robots towards the next poses using inverse kinematics.

Algorithm 2: Shape Control

Data: xtr(k), xdes, Template
1 if RMS(xtr(k)− xdes) ≥ ϵc then /* FSI */
2 xpred(k) = xtr(k) + λ(xdes − xtr(k))
3 for l = 1 to solverIters do
4 Deformation constraints (2) on xpred(k)
5 end
6 else
7 xpred(k) = xdes

8 end
9 for i = 1 to m do /* Move Robots */

10 {xt
j
(k)} = PS({xpred

j (k)}, {xr
j}) with j ∈ pi

11 Teiti(k) = T-1
biei

(k)Tbic fi({xt
j(k), j ∈ pi})

12 Express pose of Fti w.r.t. Fei as (t, θu)
13 Compute pose of Fnei w.r.t. Fei as sat(t, θu)
14 Move Fei to Fnei with inverse kinematics
15 end

Match. It matches keypoints between the texturemap of
the object and the image. The matched points are used by
the shape tracking approach. In this paper, we do not address
matching and we assume it is solved via existing techniques.

IV. EXPERIMENTS

A. Shape tracking tests with real images

We present results from an evaluation of the shape tracking
approach on a real image sequence. Our aim is to illustrate
the capabilities of the approach for shape servoing purposes.
The deformable object we used in the evaluation was a paper
sheet. It had a checkerboard pattern printed on to facilitate
maintaining a stable perception. We defined the template
with 80 particles situated on the corners of the pattern.
These corners were tracked in the image using the KLT
algorithm. A human manipulated the object using a rigid
attachment to two patches (each fixing four corners) on the
object, emulating a robotic manipulation scenario. We used
a calibrated Logitech C270 webcam and an HP EliteBook
computer with Intel Core i5 CPU and 8GB RAM. A non-
optimized Matlab implementation of the shape tracking was



Fig. 3. Shape tracking results. Top: three images from the sequence. Three tracked points are circled in each image. The patches are marked in red.
Bottom: inferred 3D shapes for the images on top. Ground truth using all points (lighter, green) and result using the three tracked points (darker, blue).
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Fig. 4. Shape tracking results. Left: RMS error. Right: execution time.

used. Each numerical value of error and execution time
in figure 4 comes from averaging over 150 images in
the sequence and over 10 runs, with a fixed number of
matches chosen randomly for each run. We used as ground
truth a shape estimation obtained at each k using standard
Particle-SfT with all 80 points and a very small ϵ; this is
reasonable because Particle-SfT has been proven to have
high accuracy [6]. We used the 3D positions of the patches’
corners in the ground truth as input to our shape tracking.
We used parameters maxIters = 2000, solverIters = 2,
ϵ = 10-5 m, µ = 0.2, β = 1.

Accuracy. We provide a visual comparison of inferred
shapes of the sheet in three cases (figure 3) between the
ground truth and our proposed shape tracking approach using
only three matches. We recall that our work does not pursue
highly accurate reconstruction but rather, to guide a servoing
task, which can be done with a much more imperfect shape
inference. The tracked shape remains close to the ground
truth. The servoing tests presented in later sections show that
the proposed shape tracking is accurate enough for the task.

Speed. The approach ran at up to 20 frames per second
(see figure 4, right). The execution is faster with more
matches because the reprojection constraints of Particle-
SfT take larger correction steps towards the solution than
the deformation constraints do. This allows to converge in

fewer iterations. The parallel computation of deformation
constraints and the use of grasped patch constraints increased
speed 3 times, on average, relative to standard Particle-SfT.

Robustness. We see in figure 4 that a small number of
image points suffices to obtain a usable reconstruction. This
is also confirmed by figure 3. Therefore, the proposed scheme
can operate in the presence of occlusions during servoing.

Sources of information. A key observation is that the
grasped patch constraints anchor the shape inference and
allow the tracking to operate under reduced visibility. Indeed,
we verified that using standard Particle-SfT with perfect ini-
tialization at time zero, the same three image points as in the
tests in figure 3, but no patch constraints, tracking was lost
with RMS errors reaching several dozens of mm. Moreover,
using no image points at all (i.e., only patch constraints)
also gave high errors, and is clearly not a viable solution
in general. Note additionally that the template is just an ap-
proximate model and we did not calibrate its parameters for
the particular object used; the visual information, however,
makes up for the inaccuracy of the template. All this supports
the interest of the shape tracking approach we propose, which
exploits all sources of information (image, template, patch
constraints, and shape inferred in the previous iteration).

B. Shape servoing simulations

We describe simulated data experiments, for which we
used Matlab as well. We developed our code from core
functions of the programming language. We considered two
KUKA LWR robotic arms manipulating a deformable object.
We simulated the object’s deformation using position-based
dynamics, which is commonly employed in physics engines.
The average execution times per iteration were 120 ms for
shape tracking and 37 ms for shape control. We used λ = 0.2.
We present results for a paper sheet and a shoe sole.
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Fig. 5. Shape servoing results. Top: Initial configuration (left), two intermediate configurations during servoing, and final configuration (right). The current
(blue) and desired (red) shapes are shown. Bottom: Camera images for the plots on top. The image of the current shape is shown in blue. The matched
points appear as filled circles and the patches are shown in black color. The fixed image of the desired shape is also shown overlaid, in red color.
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Fig. 6. Shape servoing results. Left: maximum (among all particles)
servoing error measured as the difference between the current and the
desired shape. Right: maximum (among all particles) error of shape tracking
w.r.t. the ground truth for the current shape.

Paper sheet. We modeled a sheet of size A4 with 64
particles. We describe an example of a difficult shape ser-
voing task with this object. The task is difficult because the
initial and desired shapes are very different, yet the poses
of the patches are identical in both shapes. This can be
seen in figure 5 (left column). By simply controlling the
poses of the patches, the robots would not move at all in
this example. In contrast, by taking into account the object’s
shape and template, our method can successfully complete
the task and servo across this large deformation. To test
the robustness of the servoing scheme, we introduced non-
idealities such as (i) inaccurate template: we chose β =
0.3 whereas the true value of the parameter for the actual
object’s deformation was 1, (ii) incomplete and unstable
visual feedback: specifically, a set of between 1 and 10
image point matches changing randomly was used and (iii)
additive Gaussian image noise, of standard deviation 3 pixels.
The robot motions successfully brought the object to the
desired shape despite the perturbations. Figure 6 shows that
the proposed scheme completed the servoing within 1 mm
shape error even though the final shape perception error was
in the order of 10 mm. The presented approach is therefore
capable of overcoming inaccuracies in shape perception.

Shoe sole. We modeled a shoe sole with 30 particles. We
changed the gripping setup: this time, the robots grasped the
object from above. We included similar perturbations to the
previous example: an inaccurate β (0.5 vs. the actual value
of 0.8), image noise of 3 pixels, and a set of 1 to 5 random
image matches. The results are shown in figures 7 and 8.
The robots successfully completed the shape servoing with
10 mm maximum error among all points.

C. Shape servoing experiment

We tested our shape servoing scheme with a robotic
arm (Franka Emika Panda) manipulating a rectangular paper
sheet. We modeled the sheet with 48 particles. We attached to
it two planar rigid pieces thus creating a patch on each of the
two shorter sides of the sheet. Note that this is equivalent to
using instead rigid planar robotic grippers having the shape
of the patch. Each patch contained four particles. One patch
was fixed in the environment. The other was grasped by the
robot. Only the grasped patch was used for shape control,
but both of them were used for shape perception. We used
a Dell OptiPlex 5060 computer, with Intel Core i7 CPU and
16 GB RAM. The camera was a Logitech C270 webcam. We
used the OpenCV library and Aruco markers for matching.
We implemented Algorithms 1 and 2 in Python. We used
ROS to control the robot, sending Cartesian end-effector pose
commands. In this experiment we captured the desired image
with the robot grasping the object. This helped to obtain
a precise and reachable desired shape. For the experiment
we present, the parameter values were maxIters = 60,
solverIters = 1, ϵ = 10-6 m, µ = 0.2, ϵc = 0.02m,
λ = 0.2, β = 0.3. We tested other combinations of parameter
values that also provided satisfactory performance.

In figure 9 one can notice the convergence of the shape
servoing by the similarity between the superimposed final
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Fig. 7. Shape servoing results. Top: Initial configuration (left), two intermediate configurations during servoing, and final configuration (right). The current
(blue) and desired (brown) shapes are shown. Bottom: Camera images for the plots on top. The image of the current shape is shown in blue. The matched
points appear as filled circles and the patches are shown in black color. The fixed image of the desired shape is also shown overlaid, in brown color.
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Fig. 8. Shape servoing results. Left: maximum (among all particles)
servoing error measured as the difference between the current and the
desired shape. Right: maximum (among all particles) error of shape tracking
w.r.t. the ground truth for the current shape.

and desired images. The shape tracking was stable and had
suitable accuracy to guide the task (see rightmost plot).
The shape tracking computation took 56 ms per iteration
and the full control loop ran at 69 ms per iteration. There
were occlusions as some markers were not visible during
servoing. Visibility reached a minimum value of 54% during
the task. The results thus illustrate the accuracy, speed and
robustness of the proposed servoing scheme. We provide
further experimental results in the video attachment.

V. DISCUSSION

A. Why use SfT for shape perception?

One could use, for instance, a depth sensor (e.g., RGBD
camera) or Non-Rigid Shape-from-Motion (NRSfM).

Depth sensor. It is usually noisy, works poorly outdoor
and has specific working ranges which might not be adapted
for a given task. It cannot sense the occluded parts either.

NRSfM. It does not need a template. However it requires
multiple images to infer the shapes of the object’s common
visible surface and only up to scale. It can thus neither
infer the occluded parts nor the depth of the desired shape.
Therefore it is not adapted to servo the object’s shape.

SfT. For objects that deform isometrically, we recall that
SfT yields the true solution from a single image. SfT can also
infer the occluded parts of the object thanks to the template.
It allows us to implement the proposed scheme using only
a monocular camera. This is important since the monocular
camera is the principal sensor in numerous confined space
problems where the objects are usually deformable, such as
minimally invasive surgery and micro/nano manipulation.

B. Convergence of the proposed shape servoing scheme

The proposed robots’ pose control is stable and the shape
perception can provably find the true shape. The predicted
feasible shape computed at each k by FSI is intended to be
an evolution of the current shape towards the desired one.
The underlying idea of the strategy Move Robots is that a
small current shape evolution requires small patch displace-
ments and may thus be reliably reproduced by the patch
motions the strategy creates. Thus, the current shape can get
closer to the predicted one, i.e., ||x(k + 1) − xpred(k)|| ≤
||x(k)−xpred(k)||. Also, the desired shape is feasible, as it
is a shape the object itself has taken. Under these facts, the
proposed scheme can achieve the desired shape.

C. Servoing through singular shape configurations

λ determines the length of the steps FSI takes towards the
desired shape. The smaller λ, the better the object can follow
the predicted shapes. However with a small λ a predicted
shape might get stuck in a singular configuration or the object
might not be able to go across a singular configuration (e.g.,
flat shape for a paper sheet). On the other hand, the larger
λ, the easier it is to go through a singular configuration; but
the object might not follow the predicted shapes.
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Fig. 9. Shape servoing experiment results. Left to right: the initial image, an intermediate image, and the final image (with the desired image superimposed)
during servoing; RMS of the estimated shape servoing error xtr(k)-xdes.

VI. CONCLUSION

The proposed scheme has the advantages of being simple
and capable of handling large isometric deformations without
requiring complex information. The proposed shape tracking
and shape control methods in the scheme are clearly comple-
mentary, because they are both based on the template. Still,
they can also be used independently. This scheme can be
applied to stiff objects such as paper, however one could use
it for fabrics as well by taking into account gravity.

As future work we shall address: (i) controlling non-
isometric deformations, (ii) upgrading the proposed scheme
for volumetric objects, and (iii) studying formally the con-
vergence of the proposed scheme.
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