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Abstract
We address two problems. First, reconstructing a sphere of a prescribed radius

from a single calibrated view of its occluding contour. Second, reconstructing si-
multaneously a sphere of a prescribed radius and the camera focal length from a
single view of the sphere’s occluding contour. A sphere’s occluding contour gen-
erally appears as an ellipse and existing reconstruction methods use ellipse fitting,
thus requiring ≥ 5 contour points. The calibrated minimal solution requires 3
points, and a few methods can deal with it. The minimal solution with an un-
known focal length requires 4 points, and there exists no method to deal with it.
All existing methods share two shortcomings: (i) they fail for non-elliptic occluding
contours, including parabola and hyperbola, and (ii) they use the point-to-ellipse
distance, whose computation is not closed-form. On the first problem, we make the
observation that the spherically-normalised contour points form a circle in space,
which we reconstruct by plane fitting. This handles minimal 3-point and redun-
dant > 3 point fitting, copes with elliptic and non-elliptic contours, and benefits
from the simple point-to-plane distance. The reconstructed circle then leads to a
one-parameter sphere family from which the actual sphere of prescribed radius is
uniquely retrieved. We name our method SpherO, where letter ‘O’ depicts a cir-
cle. We robustify SpherO using random sampling at the 3-point plane fitting stage.
Experimental comparisons show that SpherO outperforms the current-best 3-point
method. On the second problem, we make the observation that the spherically-
normalised contour points generally form a non-circular spatial elliptic curve for
wrong camera parameters. The calibration constraint is thus that the spherically-
normalised points must be cocircular, which implies coplanarity. The coplanarity
constraint allows us to solve the minimal 4-point case. We solve redundant > 4
point case by fitting planes. This simultaneously reconstructs a circle and the cam-
era focal length from a non-circular spatial elliptic curve. Finally the reconstructed
circle and the camera focal length allow us to retrieve the sphere of prescribed
radius. We name our method SpherOf, where letter ‘f’ is for the focal length.
We robustify SpherOf using random sampling at the 4-point coplanarity constraint
formation and 3-point plane fitting stages. Experiments show that SpherOf has
comparable performance to SpherO.
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1 Introduction

Sphere reconstruction, equivalent to sphere-based camera localisation, forms a practical
tool for applications requiring the pose of sphere-shaped objects. These applications
include real-time surgical tool tracking and guidance, and visual robot servoing. Sphere
reconstruction, given its radius and its occluding contour in a single view taken by a
perspective camera, entails finding the sphere’s 3D centre point. We address two sphere
reconstruction problems. The first problem is reconstructing a sphere of a prescribed
radius from a single calibrated view of its occluding contour. The second problem is
reconstructing simultaneously a sphere of a prescribed radius and the unknown camera
focal length from a single view of the sphere’s occluding contour, given the other intrinsic
parameters including the principal point. A sphere’s occluding contour is observed as
either an ellipse, a parabola or a hyperbola in the perspective image. Existing methods
mostly address the first problem. They handle the elliptic case –the most common one–
but fail for the other two cases. They approximate the point-to-ellipse distance, which is
not closed-form, by its algebraic counterpart.

We propose a novel simple and convex method resolving the state-of-the-art’s limi-
tations. We make the observation that the spherically-normalised contour points form a
circle in space, which we reconstruct by plane fitting. For the first problem, the recon-
structed circle leads to a one-parameter sphere family from which the actual sphere of
prescribed radius is uniquely retrieved. We name our method SpherO, where letter ‘O’
depicts a circle. SpherO uses mere plane-fitting, making it the most compelling method
with respect to existing work. First, SpherO handles both minimal 3-point and redun-
dant > 3 point cases seamlessly. It can thus serve as minimal method in the inner loop
of RANSAC-like robust methods and as final refinement method given the inlier set.
Second, SpherO uses a geometric cost function, namely a point-to-plane distance. It en-
tirely avoids the point-to-conic distance required by existing methods, providing a quick
and sound way of determining the inlier set within RANSAC. Third, SpherO seamlessly
deals with the settings where the sphere is seen as an ellipse, a parabola or a hyperbola.
Fourth, SpherO provides a one-parameter family of spheres when the sphere’s radius is
unknown and uniquely reconstructs the sphere otherwise. Fifth, SpherO does not have
artificial degeneracies. In other words, SpherO deals with all settings where the sphere’s
occluding contour is a proper conic. For the second problem, which extends SpherO to
also reconstruct the focal length, we make the observation that the spherically-normalised
contour points generally form a non-circular spatial elliptic curve under wrong calibra-
tion parameters. The calibration constraint is thus that the spherically-normalised points
must be cocircular, implying coplanarity. We optimise the coplanarity of a non-circular
spatial elliptic curve to form a circle by fitting planes. This simultaneously reconstructs
a circle and the camera focal length. Finally, the reconstructed circle and camera focal
length allow us to retrieve the sphere of prescribed radius. We name our method SpherOf,
where letter ‘f’ is for the focal length. SpherOf inherits all the advantages of SpherO.
It handles both minimal 4-point and redundant > 4 point cases seamlessly. It can thus
serve as minimal method in the inner loop of RANSAC-like robust methods and as final
refinement method given the inlier set.

This paper is an extension of the short conference paper [9], with additional method-
ological and experimental contributions, as follows:

1. We experimentally show, using a new refinement method, that the robustified
SpherO solution (Robust-SpherO) does not require refinement. Consequently, it
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remains as the most accurate and the fastest sphere reconstruction method from a
single calibrated view [9].

2. We introduce the second problem, which extends the first problem from [9] by
including the focal length as an unknown parameter, for which we propose SpherOf.
It forms the first method which handles the minimal 4-point case.

The rest of the paper is organised as follows. Section 2 reviews related work. Section 3
presents the modelling and assumptions. Section 4 deals with the first problem and
section 5 with the second problem. Section 6 concludes.

2 Related Work

We review existing methods for sphere reconstruction from a single view of a sphere.

2.1 Reconstructing a Sphere from a Calibrated View

There exist only three methods which use 3 points or more [13, 11, 14]. Methods [13]
and [11] are not robust; they minimise the squared algebraic point-to-ellipse image dis-
tance. Methods in [14] minimise the geometric distance from a cone tangent to the sphere
(method Toth); it provides a RANSAC-based robust solution specifically relying on the
ellipse to form the consensus set (method Robust-Toth). It is shown in [14] that Toth
outperforms the two methods [13, 11] and other existing methods requiring at least 5
points [5, 7, 8], and is thus the state of the art. Table 1 summarises the characteristics
of the proposed SpherO and Robust-SpherO in comparison to Toth and Robust-Toth.
We have that SpherO and Toth are both minimal and redundant, can handle any conical
occluding contours and use a geometric cost. We will see that SpherO is simpler to derive
and faster. We have that Robust-SpherO is the first robust method to handle any conical
occluding contours, as Robust-Toth is restricted to ellipses.

Table 1: Comparison of ≥ 3-point sphere reconstruction methods.

Handles all image conics Fits Geometric costs

Toth [14] ✓ cone secant

Robust-Toth [14] only ellipse
ellipse point-to-ellipse distance*
cone secant

SpherO ✓ plane point-to-plane distance
Robust-SpherO ✓ plane point-to-plane distance

*numerically approximated by algebraic distance

2.2 Reconstructing a Sphere and the Camera Focal Length

There does not exist methods which handle the minimal 4-point uncalibrated case. Only
one method solves analytically the camera focal length from a single view of the sphere’s
occluding contour given the principal point [6] through conic fitting with 5 or more
points. It then proposes to use a calibrated method from [15] to reconstruct the sphere.
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Method [6] is not robust and does not provide a complete solution for reconstructing a
sphere and the camera focal length.

In contrast, SpherOf reconstructs simultaneously both the sphere and the camera focal
length. It requires neither conic fitting nor algebraic point-to-conic distance computation.
SpherOf handles the minimal 4-point and redundant > 4 point cases. We also propose
three random sampling-based Robust-SpherOf methods.

3 Modelling and Assumptions

We define the two reconstruction problems and then present the modelling and the as-
sumptions made to address the problems.

3.1 Problem Statements

Calibrated sphere reconstruction. We reconstruct a sphere of a prescribed radius
from a single calibrated view of its occluding contour.

Uncalibrated sphere reconstruction. We reconstruct simultaneously a sphere of a
prescribed radius and the unknown camera focal length from a single view of the sphere’s
occluding contour, given the other intrinsic parameters including the principal point.

3.2 Modelling

We introduce the notation and theoretical properties on these two problems.

3.2.1 Notation

We denote the set of real numbers as R and the set of natural numbers as N. We express
all 3-space coordinates in the standard pinhole camera coordinate frame. We denote the
intrinsic matrix as K ∈ R3×3, the optical centre as O ∈ R3, the unit direction vector of
the principal axis as z ∈ R3×1, the principal point as po ∈ R2 in pixels, and the focal
length as f ∈ R+ in pixels. We denote the sphere’s centre as C ∈ R3 and the sphere’s
radius as R ∈ R+. We denote the points on the sphere’s contour generator as Pi ∈ R3

for i = 1, . . . ,m ∈ N. We denote their corresponding points on the sphere’s occluding
contour in the image as pi ∈ R2 in pixels. They are related to each other proportionally

as p̄i ∝ KPi where p̄i =
[
p⊤
i , 1

]⊤
is the homogeneous coordinates of an occluding contour

point. The backprojection of the occluding contour point forms a ray that starts from the
optical centre O and passes through its corresponding point Pi on the sphere’s contour
generator. We define stk(a, b) = [a⊤, b⊤]⊤ as the stacking function and P : R3 → R2

with P(X,Y, Z) = (X, Y )/Z as the canonical perspective projection function.

3.2.2 Theoretical Properties

Spherical normalisation places an image point on the camera-centred unit sphere. We
build the theoretical properties of calibrated and uncalibrated sphere reconstruction prob-
lems based on our geometric observations on the outputs of the spherical normalisation
function:

η(x ) = x/∥x∥ (1)
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where x is a 3-space vector. We provide two geometric observations. One for the cor-
rect and the other for incorrect camera parameters. These observations also reveal the
constraints of the problems.

Correct camera parameters. Considering that the camera parameters are correct,
we formalise the following proposition on a sphere’s occluding contour and illustrate it in
figure 1.

Proposition 1. A sphere’s spherically-normalised occluding contour is a sphero-circle.

A sphero-conic is a curve formed by intersecting a quadric cone with the unit sphere
whose centre is the vertex of the cone. If the cone is circular then the sphero-conic is a
circle [2] also known as ‘sphero-circle’. Using this result with the camera centre taken as
vertex and the sphere’s projection lines taken as circular cone proves proposition 1.

Incorrect camera parameters. Considering that the camera parameters are wrong,
we formalise the following general configuration on a sphere’s occluding contour.

General configuration 1. Incorrect camera calibration parameters make a sphere’s
spherically-normalised occluding contour a non-circular sphero-ellipse.

An incorrect calibration translates the image plane in 3D. Explicitly, an incorrect
principal point translates the image plane along x and y axes of the camera’s coordinate
frame. An incorrect focal length translates the image plane along the optical axis. The
occluding contour observed on the camera’s sensor is supposed on the translated image
plane. Subsequently, the occluding contour and the optical center form a new cone. This
cone generally turns out to be non-circular. It follows that the intersection of a unit
sphere with a non-circular cone, whose vertex is the unit sphere’s centre, is a non-circular
sphero-ellipse [1]. Next, we give possible degenerate configurations.

Degenerate configuration 1. Incorrect camera calibration parameters make a sphere’s
spherically-normalised occluding contour a sphero-circle in the following cases:

Case 1. The image plane translates parallel to the direction showing the sphere’s centre.

Case 2. Symmetric configurations of Case 1 with respect to the optical axis.

Constraints. We know from proposition 1 that the correct camera parameters yield a
sphero-circle upon spherical normalisation. Thus the spherically-normalised points must
be cocircular. This constraint implies coplanarity, a weaker constraint which can be
considered a relaxation of cocircularity in 3-space. We exploit the coplanarity constraint
in the solutions of the calibrated and uncalibrated sphere reconstruction problems.

3.3 Assumptions

We make the following assumptions on the two reconstruction problems.

On calibrated sphere reconstruction. We consider that camera’s intrinsic parame-
ters are known.
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Figure 1: The geometric observation subtending the calibrated sphere reconstruction.
Tilting the camera’s image plane towards the cone axis leads to the sphere’s occluding
contour (solid, on image plane) becoming a parabola and eventually a hyperbola. Impor-
tantly, the contour generator (dashed, on sphere) and normalised points (solid, on unit
sphere) remain invariant, hence sphero-circles, in all projection cases.
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On uncalibrated sphere reconstruction. We discuss three possible uncalibrated
reconstruction setups: (i) reconstructing the focal length given the principal point, (ii)
reconstructing the principal point given the focal length, and (iii) reconstructing the focal
length and the principal point.

In the first setup (i), knowing the principal point avoids most of the degenerate con-
figurations of setup (iii). This is because the image plane misplacement can only be
along the optical axis due to an incorrect focal length. Under these circumstances, de-
generate configurations can only occur if the sphere’s centre is on the optical axis. This
corresponds to Case 1 in degenerate configuration 1, and Case 2 becomes Case 1. Oth-
erwise, there remains only one possible sphero-circle formation between the sphero pole
and the sphero great circle of the unit sphere yielding the correct focal length.

In the second setup (ii), knowing the focal length fixes the depth of the image plane.
The image plane misplacement can thus be along the x and y axes of the camera’s coor-
dinate frame due to an incorrect principal point. Under these circumstances, there exist
two possible sphero-circle formations on the unit sphere symmetrical to the optical axis.
Therefore, there are two solutions to the principal point. Choosing the solution closest to
the image centre should usually yield the correct principal point. If the sphere’s centre is
on the optical axis, then there exist one sphero-circle formation which yields the correct
principal point.

In the third setup (iii), the image plane misplacement can be along the x, y and z
axes of the camera’s coordinate frame. Under these circumstances, degenerate configura-
tions can appear for both Case 1 and Case 2 of degenerate configuration 1. Furthermore,
the effects of the principal point and the focal length on the sphero-circle formation are
coupled. This is because varying the principal point alone can slide the normalised points
on the unit sphere in a very similar way to varying the focal length alone would do. How-
ever, the other way around is not necessarily true. This setup thus has important marked
singularities.

In practice, the focal length is the most important parameter and the only one that
cannot be set to a default value; many self-calibration algorithms estimate only the focal
length (e.g., [10, 4]). We therefore focus on setup (i): reconstructing the focal length
given the principal point. It addresses many applications where the principal point is
known or can be approximated with the image centre. Following this discussion, we
assume that the focal length is shared on the x and y image axes (in other words, the
pixels are square), that the focal length is the only unknown intrinsic parameter, and
that the view is in general configuration (in particular, that the sphere’s centre is not on
the optical axis).

4 Reconstructing a Sphere from a Calibrated View

We first introduce SpherO’s robust solution as a robust initialising method and then a
refinement method for the reconstruction of a sphere from a calibrated view.
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4.1 Robust Initialisation

SpherO reconstructs the sphere’s centre from a single calibrated view. SpherO has three
steps. First, following proposition 1, we spherically normalise the sphere’s occluding
contour to form a sphero-circle as illustrated in figure 1. Second, we reconstruct the
sphero-circle’s support plane, centre and radius. This induces a one-parameter sphere
family. Third, we retrieve the actual sphere of prescribed radius. The use of spherical
normalisation, following proposition 1, allows one to remove the distorting effects of
the camera’s image plane by converting the image points into a 3D circle on the camera-
centered unit sphere. In the following, we give SpherO’s three steps and its robustification
Robust-SpherO.

4.1.1 Spherical Normalisation of the Occluding Contour

Spherical normalisation is the first step of SpherO. We spherically normalise the homo-
geneous occluding contour points using equation (1) with the given intrinsic matrix K as
follows:

qi = η(K−1p̄i ) (2)

which form a sphero-circle.

4.1.2 Sphero-circle Reconstruction by Plane Fitting

Sphero-circle reconstruction is the second step of SpherO. We give a solution using plane
fitting. We first give the general case for m ⩾ 3 points. We then give an equivalent but
lower computation cost version for m = 3, which is meant to be used in RANSAC’s inner
loop. We finally give closed-forms for the sphero-circle’s centre and radius.

General plane fitting. We define the best-fitting plane as the minimizer of the sum
of the squared orthogonal distances between the spherically-normalised points and the
plane. Let q0 be the average of the points. We use a simple singular value decomposition
of the 3 × m matrix containing the centred points qi − q0, whose least singular vector
gives the plane’s unit normal vector n ∈ S2 [3]. The plane’s signed distance to origin
is d

Π
= q⊤

0 n and the plane’s coordinate vector is Π = [ sign(d
Π
)n⊤, −|d

Π
| ]⊤, where

sign(d
Π
) ensures that the normal vector points toward the sphere.

Minimal 3-point plane recovery. Given 3 points q1, q2 and q3, the plane normal is:

n = η ( (q3 − q1)× (q2 − q1) ) . (3)

The plane’s signed distance to the origin is then d
Π
= q⊤

i n where i ∈ {1, 2, 3} is any of
the 3 points. Since any set of 3 points lies perfectly on a plane, the 3 points’ projections
onto the plane’s normal yield the same distance d

Π
. Finally, the plane coordinates Π are

formed as above for m ⩾ 3.

Sphero-circle reconstruction. The best-fitting plane’s normal n yields the sphero-
circle’s support plane normal. We recall that the intersection of a plane orthogonal to the
axis of a circular cone is a circle whose centre is the intersection point with the cone’s axis.
This implies that the sphero-circle’s support plane is perpendicular to the cone’s axis. It
follows that the sphero-circle’s centre c = d

Π
n is the closest point of its support plane
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to the origin. We thus proceed to compute the sphero-circle’s radius as follows. First,
we form a right triangle (Ocqi) using the camera centre O, the sphero-circle’s centre c
and any normalised point qi of the sphero-circle. The length of hypotenuse ∥O− qi ∥ is
1 since qi is spherically normalised. Second, we apply Pythagoras’s theorem to calculate
the sphero-circle’s radius r =

√
1− d2

Π
. We finally write the sphero-circle’s coordinate

vector as ⊙ = [n⊤, c⊤, r ]⊤.

4.1.3 Sphere Family Reconstruction and Sphere Localisation

We use the sphero-circle to reconstruct a one-parameter sphere family containing all
spheres whose occluding contour matches the observed one. We parameterise this family
by the sphere radius κ. If the reconstruction radius R is not prescribed, this family
represents all potential reconstruction solutions; if it is prescribed, then SpherO’s third
step uses it to localise the uniquely reconstructed sphere from the family, by simply
setting κ = R.

We represent a sphere by a 4-vector in the affine space R4 as s(κ) = [C(κ)⊤, κ ]⊤,
with centre C(κ) ∈ R3 and radius κ ∈ R+. The centre C(κ) must be on the ray which
starts from the camera centre O. It thus passes through the sphero-circle’s centre c and
is also aligned with the sphero-circle’s support plane normal, leading to:

C(κ) = d(κ) n, (4)

where d(κ) encodes the depth of the sphere’s centre. This depth may be found by forming
two similar right triangles. The first triangle (Ocqi) is the same one as explained in
the sphero-circle reconstruction. The second triangle is (OPiC). It follows that:

d(κ) = κ/r. (5)

Finally, when the sphere radius is prescribed asR, the reconstructed sphere isR [n⊤/r , 1]⊤.

4.1.4 Robust Solution from Random Sampling

We perform sampling-based robust sphere reconstruction using SpherO’s minimal plane-
fitting solution. We give Robust-SpherO in algorithm 1. The inputs are the sphere’s

Algorithm 1 Robust-SpherO

Input: Sphere’s occluding contour pixels {pi | pi ∈ R2, i = {1, . . . ,m}, m ⩾ 3 },
sphere’s radius R ∈ R+ in metric units, camera intrinsics K ∈ R3×3,
and RANSAC threshold τpix ∈ R+ in pixels (e.g., 1 pixel)

Output: Sphere s ∈ R4

1: τ = Threshold Normalisation( τpix, K ) // equation (6)
2: {qi } = Spherical Normalisation({pi }, K ) // equation (2)
3: Π = RANSAC Plane Fit({qi }, τ ) // section 4.1.2
4: ⊙ = Sphero-Circle Reconstruction(Π ) // section 4.1.2
5: s = Sphere Recovery(⊙, R ) // section 4.1.3

occluding contour pixels, the sphere’s prescribed radius, the camera intrinsics and the
RANSAC threshold. The output is the sphere of prescribed radius. Line 1 transforms
the RANSAC threshold distance from pixel units to a distance in the normalised image
plane as follows:

τ = τpix/max(fx, fy), (6)
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where fx and fy are the focal lengths in pixels from the camera intrinsics. The RANSAC
threshold τpix can be considered as the maximum reprojection error of a reconstructed
sphere solution. Intuitively, one can choose it as equal to or greater than the camera’s
intrinsic calibration accuracy (i.e., reprojection error in pixels). Line 2 spherically nor-
malises the occluding contour. Line 3 uses RANSAC on the normalised occluding contour
points. The algorithm iterates using the 3-point plane recovery formula (3) on random
3-point samples. Each plane uses a threshold scaled by its depth τ

Π
= |d

Π
| τ to form its

consensus set. The algorithm terminates with a best-fitting plane on the largest consen-
sus set. Line 4 reconstructs the sphero-circle from the best-fitting plane. Line 5 retrieves
the sphere of prescribed radius from the sphere family obtained through the sphero-circle.

4.2 Refinement

Section 4.1 provides an initialisation. It works from m image points p1, . . . ,pm on the
occluding contour, which certainly contain noise and may contain blunders. Our objective
is to refine the initial solution. The proposed method is inspired from the conic fitting
method [12].

4.2.1 Assumptions

We assume that the noise is Gaussian IID on the point to contour distance. Hence, the
maximum likelihood solution is given by minimising the sum of squared distances. As
the points may include blunders, we replace the square by an M-estimator ρ, though
the method is generally applicable with any function ρ on the distances. Details on the
M-estimator theory can be found from [16].

4.2.2 Principle

The sphere’s occluding contour in the image is a conic, generally an ellipse. This creates
a major difficulty, that the point to conic distance does not have an analytic expression,
as it involves solving a quartic expression with up to four roots. This was apparently
overlooked in previous work, were the algebraic approximation is used without a clear
mention to it not being the true geometric distance.

Following [12], the proposed method introduces latent variables to cope with this
difficulty. In essence, an unknown point is estimated for each data point and constrained
to be on the conic and closest to the data point. A latent variable represents each of these
unknown points. Geometrically, we know that the occluding contour is a space circle,
which is the intersection of the sphere with some plane. We thus parameterise this circle
by a canonical circle, centred at the origin and with unit radius. The unknown points
are located on this circle and parameterised by an angle αj, which is the latent variable.

4.2.3 Method

Occluding contour generation. Let o = stk(cosα, sinα) be a point on the canonical
circle. Point o is embedded in 3-space by a scaled-rigid transformation, as:

P = sR̄o+T, (7)

where s ∈ R is the circle radius of the contour generator, R̄ is an SS23 matrix, i.e., the
first two columns of a 3D rotation matrix, and T is a translation given the circle centre

11



in 3-space. The point is then projected to the image as K(sR̄o + T) in homogeneous
coordinates. This is exactly a homography, as it can be rewritten as:

H stk(o, 1) with H = K[sR̄T]. (8)

In this homography however, as K is known, only 6 DOF remain, not 8. The projection
in cartesian coordinates, which we require to compute the distance for the cost function,
is given by:

P
(
K(sR̄o+T)

)
. (9)

Problem formulation. Let A = sR̄, hence it must satisfy A⊤A ∝ I2×2. We thus
formulate the problem as:

min
A,T

α1,...,αm

m∑
j=1

ρ (∥pj − P (K (A stk(cosαi, sinαi) +T)) ∥) s.t. A⊤A ∝ I2×2. (10)

Dealing with the orthogonality constraints may be inconvenient. We further reduce the
set of matrices which R̄ belongs to. Indeed, let R = RXRYRZ be the Euler angle
parameterisation of the base rotation corresponding to R̄, we can fix the in-plane rotation
origin by setting RZ = I, hence θZ = 0. We thus have:

A = sR̄ = sRXRY stk(I,0⊤) =

 sc2 0
ss1s2 sc1
−sc1s2 ss1

 , (11)

where ci = cos θi and si = sin θi. Matrix A has 5 non-zero entries but 3 DOF. There is
unfortunately no simple parameterisation with 3 parameters. In order to avoid explicit
constraints, we thus use the 2 Euler angles, giving:

min
s,θ1,θ2,T
α1,...,αm

m∑
j=1

ρ (∥pj − P (K (A stk(cosαi, sinαi) +T)) ∥) . (12)

This is minimised by gradient descent straightforwardly.

4.3 Experimental Results

We first compare the robust initialising methods and discuss the results. We then compare
the best initialising method with the refinement method and discuss the results.

4.3.1 Comparison of Robust Initialisation Methods

We compare Robust-SpherO to the state of the art Robust-Toth, i.e., 3pFit +Direct3pFit
from [14], through synthetic and real data experiments.

4.3.1.1 Synthetic Data Experiments

We test the methods’ robustness against elliptic and non-elliptic occluding contours. We
used the intrinsics of a calibrated camera throughout the synthetic data experiments.
The focal length was fx = fy = 1174 pixels, the principal point was x0 = 1028.4 and
y0 = 673.4 pixels and the skew was 0. For a fair comparison of the methods, they
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both used the same random samples from the sphere’s occluding contour and the same
RANSAC threshold τpix, chosen equal to the image noise level.

The graphs show the mean and standard deviation of the error, which is the Euclidean
distance to the ground-truth sphere centres against the varying noise level, number of
correct and erroneous points, occlusion level, depth and occluding contour type. We
repeated the experiments 1000 times for each value of a varying parameter.

4.3.1.1.1 Robustness with Elliptic Occluding Contours

We formed the elliptic occluding contours. The sphere radius was R = 0.5metres and
the sphere centre was generated randomly in each trial as C = [x ∼ N (µ, σ2) , y ∼
N (µ, σ2) , z ∼ N (µz, σ

2
z) ]

⊤ with µ = 0 and σ2 = 2 and µz = 5 and σ2
z = 1 metres.

Accuracy versus image noise and number of correct points. We varied the
white Gaussian noise level from 0 to 10 pixels with step size of 1 pixel. Experiments
were performed with 100 correct points (figure 2 - left). We then varied the number of
correct points from 10 points to 100 points with step size of 10 points. Experiments
were performed with 2 pixels white Gaussian noise (figure 2 - right). Robust-SpherO

outperforms Robust-Toth in both set of experiments, with errors consistently twice as
low.

Figure 2: Mean and standard deviation of errors versus image noise levels (left) and
number of correct points (right). Correct points belong to the sphere’s occluding contour.

Accuracy versus number of erroneous points. We varied the erroneous point rate
from 5% to 75% with step size of 5% and using 100 points in each trial. Figure 3 presents
the results with the following fixed parameters: 1 pixel white Gaussian noise (left) and 2
pixels white Gaussian noise (right). Robust-SpherO outperforms Robust-Toth, though
a breakpoint appears at 50% and 35% of erroneous point rates, respectively.

Accuracy versus occlusion. We varied the occlusion level from 10% to 70% with
step size of 10% over 100 contour points. Figure 4 presents the results with the following
fixed parameters: 1 pixel white Gaussian noise and 10% erroneous points (left); 2 pixels
white Gaussian noise and 20% erroneous points (right). Robust-SpherO outperforms
Robust-Toth, though a breakpoint appears at 50% and 40% of occlusions, respectively.
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Figure 3: Mean and standard deviation of errors versus erroneous point rates with 1 pixel
noise (left) and with 2 pixels noise (right). Erroneous points do not belong to the sphere’s
occluding contour.

Figure 4: Mean and standard deviation of errors versus occlusion with 1 pixel noise and
10% erroneous points (left) and with 2 pixels noise and 20% erroneous points (right).

Accuracy versus depth. We varied the sphere’s depth along the camera’s optical axis
from 1 to 10 metres with a step size of 1 metre and using 100 points in each trial with
1 pixel and 2 pixels white Gaussian noise, respectively. The error substantially increases
beyond 4 metres for both methods. Figure 5 shows that Robust-SpherO outperforms
Robust-Toth with errors consistently at least twice as low.

Synthesis. Robust-SpherO is almost always substantially more accurate than its con-
tender Robust-Toth. Nonetheless, there exist extreme cases, where the number of erro-
neous points or the level of occlusion are very large, for which the performance order re-
verts. Robust-SpherO uses 3D points to form a plane’s consensus set while Robust-Toth
uses 2D points to form an ellipse’s consensus set. Both methods use the same RANSAC
threshold, which is an in-plane distance. Robust-SpherO thus includes more points in
its consensus set than Robust-Toth because some out-of-plane 3D points remain within
the range of the RANSAC threshold although they would be out of range if projected
onto the consensus plane. The higher the percentage of erroneous points, the higher the
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Figure 5: Mean and standard deviation of errors versus depth with 1 pixel noise (left)
and with 2 pixels noise (right).

probability of Robust-SpherO to include a higher percentage of erroneous points in its
consensus set. Yet, Robust-SpherO (i.e., plane fitting) reconstructs stably up to a large
rate of erroneous points. These extreme cases are however unlikely to happen in real
scenarios.

4.3.1.1.2 Robustness with Non-elliptic Occluding Contours

Robust-Toth is not designed to handle the parabola (i.e., C⊤z = R) nor the hyperbola
(i.e., C⊤z < R), only the ellipse. Subsequently, a parabola yields an Inf through division
by zero in equation (21) in [14] by a projection parallel to the normalised image plane for
a point which otherwise would yield an endpoint of the major axis of an ellipse. However,
Robust-Toth rarely breaks down in practice for a parabola. This is because a mild noise
on a sample of the contour points can easily shift the fit to an ellipse well aligned with the
contour points. On the other hand, in a hyperbola case, an endpoint of the major axis of
an ellipse is projected to the opposite side of the image from the backside of the camera
in equation (21) in [14]. This yields a flipped and scaled ellipse away from the contour
points. Subsequently, Robust-Toth produces wrong results with a hyperbola. We formed
a parabolic occluding contour by placing the sphere centre at C = [1.2, 0, 1]⊤ with radius
R = 1 in metres. We formed a hyperbolic occluding contour by placing the sphere centre
at C = [0,−1.2, 0.8]⊤ again with radius R = 1 in metres. We made 10 trials on each
occluding contour with 1 pixel image noise and 5% erroneous points. In each trial, the
erroneous points were randomly chosen over 100 points which were also randomly chosen
from the occluding contour. Figure 6 presents the results. Robust-SpherO substantially
outperforms Robust-Toth.

4.3.1.2 Real Data Experiments

4.3.1.2.1 Relative Accuracy Evaluation

We evaluate the relative accuracy of the compared methods by individually reconstruct-
ing multiple spheres whose centre distances are known. We place a target sphere with
known radius R in contact with at least three auxiliary spheres whose radii Ri are also
known. This yields the ground-truth distances between the target sphere’s centre C and
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Figure 6: Mean and standard deviation of errors for the parabola (left) and hyperbola
(right) occluding contours with 1 pixel noise and 5% erroneous points. For the hyperbola
case (right), Robust-Toth produced out-of-bound results with a mean of about 0.42
metres.

the auxiliary spheres’ centres Ci as ∥C − Ci ∥ = R + Ri. Three auxiliary spheres fully
constrain the target sphere’s centreC, although two solutions exist. We use the compared
methods to reconstruct the respective spheres’ centres Ĉ and Ĉi from which a pairwise
error is computed as ei = | ∥ Ĉ− Ĉi∥ − (R+Ri) | for each method. Figure 7 reports the
results with 3 auxiliary spheres. The relative error is computed as ∥e∥ = ∥[e1, e2, e3]⊤∥.
The target sphere’s radius was 8.5 cm (football) and the auxiliary spheres’ radii were
3.25 cm (tennis ball), 3.5 cm (green ball) and 4.75 cm (rainbow ball), respectively. The
target sphere’s centre was about 40 cm away from the camera. We set the RANSAC
threshold τpix = 0.5 pixels which was about twice of the intrinsic calibration accuracy of
the camera. We repeated the experiment 1000 times with both methods. Robust-SpherO
yielded 4.76mm mean error with 0.01mm std. Robust-Toth yielded 6.77mm mean er-
ror with 1.9mm std. We also evaluate the relative accuracy of the compared methods

A 3D view of the reconstructed balls.

z
x

y

Camera 
frame

Rainbow
ball 

Green
ball 

Tennis ball Foot ball 

Figure 7: The input image with the spheres’ occluding contours (left). A 3D view from
behind the balls reconstructed by Robust-SpherO (right). The rainbow ball was mostly
occluded by the football. We used 100 contour points for each ball.

at different depths. Figure 8 shows the relative reconstruction errors in millimetres of
the football in contact with a tennis ball, a small basket ball and a yellow ball. The
balls are placed at 1 metre, 2 metres and 3 metres away from the camera, respectively.
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Robust-SpherO outperformed Robust-Toth with 5.9mm, 84.6mm and 231.1mm mean
errors versus 6.9mm, 91mm and 232.2mm at 1 metre, 2 metres and 3 metres, respec-
tively. We observe that the reconstruction accuracy mostly depends on the quality of the
segmented occluding contours. The yellow ball is mostly occluded and segmenting its
occluding contours at 2 and 3 metres was significantly difficult. This yielded the worst
relative errors for both methods.

Depth  1m Depth  2m Depth  3m

Figure 8: Mean and standard deviation of relative reconstruction errors (mm) of the
football with respect to auxiliary balls. The experiments are repeated 1000 times.

4.3.1.2.2 Absolute Accuracy Evaluation

We used an Intel RealSense 3D camera to measure 3D surface points of the spheres from
which the spheres’ centres Ci were computed. We used the methods to reconstruct the
sphere centres Ĉi. We then computed an absolute error ei = ∥ Ĉi − Ci ∥ per sphere.
We used the image shown in figure 7 for the experiment, which was taken by the depth
camera. We repeated the experiment 1000 times with both methods. Table 2 lists the
mean and std of the errors in millimetres with respect to the 3D camera measured centres.
We observe that the relative accuracy, as explained in section 4.3.1.2.1, computed from

Table 2: Reconstruction error of the four balls (mean ± std in mm).

Football Tennis ball Green ball Rainbow ball

Robust-Toth [14] 3.3± 0.0 4.1± 1.9 8.2± 1.6 15.2± 2.5
Robust-SpherO 3.3± 0.0 1.9± 0.0 4.2± 0.0 7.4± 0.0

the spheres’ centres measured by the 3D camera was 11.4mm. However, we also observe
that the reconstructed spheres are close to their absolute true locations. Robust-SpherO
outperforms Robust-Toth by a large margin, having a lower absolute error, both on
average and in standard deviation.

In some of the 1000 repetition experiments, the standard deviation values computed
from the reconstruction errors of Robust-SpherO remain 0 because in every trial the
consensus set included all the occluding contour points of a ball for the given RANSAC
threshold.

4.3.1.3 Runtimes

The mean and standard deviation of the runtimes combining the synthetic and real data
experiments for Robust-SpherO and Robust-Toth were 7.5 ± 0.7ms and 13 ± 0.5ms,
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respectively. Robust-SpherO thus brings an overall speed up factor of approximately 1.5
compared to Robust-Toth.

4.3.2 Comparison with the Refinement Method

We compared Robust-SpherO and its refinement. We used the refining method presented
in section 4.2, which was initialised with Robust-SpherO. We repeated the synthetic data
experiments of section 4.3.1. Table 3 lists the over all mean and std of the errors in mil-
limetres versus the set of experiments. These include noise level, number of correct
points, number of erroneous points, occlusion level, and depth experiments. We observe

Table 3: Overall sphere centre reconstruction errors (mm) versus experiments.

Noise Correct points Erroneous points Occlusion Depth

Robust-SpherO 16.5± 12 11.7± 5 10.7± 6 27.6± 37 5.4± 4
Refinement 17± 12 12± 5 55± 42 29± 40 5.5± 4

that the difference between Robust-SpherO and its refinement is lower than a millime-
tre in noise level, number of correct points and depth level experiments. The difference
between Robust-SpherO and its refinement in occlusion level experiments is about a few
millimetres, while it is significantly larger in varying number of erroneous points exper-
iments. Robust-SpherO outperforms its refinement. We conclude that Robust-SpherO
does not require refinement, and remains as the most accurate, skillful and fastest sphere
reconstruction method.

5 Reconstructing a Sphere and the Camera Focal

Length

We propose SpherOf. It reconstructs a sphere’s centre and the unknown camera focal
length. SpherOf has three steps. First, following general configuration 1, we spheri-
cally normalise the sphere’s occluding contour which would generally form a non-circular
sphero-ellipse for an incorrect focal length. Second, we reconstruct the camera focal
length by solving the coplanarity constraint on the normalised points. This simultane-
ously reconstructs a sphero-circle (i.e., support plane, centre and radius) which induces
a one-parameter sphere family. Third, we retrieve the actual sphere of prescribed radius.
The use of spherical normalisation, following general configuration 1, allows one to dis-
tinguish the correct focal length from an incorrect one. In the following, we give its first
and second steps, and its robustifications Robust-SpherOfs. Its third step is the same
as section 4.1.3.

5.1 Spherical Normalisation of the Occluding Contour

Spherical normalisation is the first step of SpherOf. We spherically normalise the homo-
geneous occluding contour points using equation (1) with an intrinsic matrix K̂ written
from a focal length estimate f̂ and the given principal point po, as follows:

q̂i = η( K̂−1p̄i ). (13)
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This would generally form a non-circular sphero-ellipse for an incorrect focal length. In
other words, the spherically-normalised points would generally be non-coplanar.

5.2 Focal Length Reconstruction

Focal length reconstruction is the second step of SpherOf. In the following, we present
its minimal 4-point case solution and redundant m ⩾ 4 point case least-squares solution.

5.2.1 A Polynomial Minimal 4-Point Solution to the Focal Length

As 3 points are always coplanar and cocircular, the minimal case is for 4 points. We for-
mulate the coplanarity constraint using any four spherically-normalised points as follows:

det

([
q̂1 q̂2 q̂3 q̂4

1 1 1 1

])
= 0. (14)

This coplanarity constraint, expressed by the determinant, will hereafter be referred to
as ζ. Geometrically, this implies that the four points form a zero-volume parallelepiped.
Let [x, y]⊤ = p − po be the coordinates of an image point with the known principal
point undone. We then factor equation (14) as:

det (ND) = 0, (15)

where:

N =


x1 x2 x3 x4

y1 y2 y3 y4
f̂ f̂ f̂ f̂
α1 α2 α3 α4

 and D = diag(1/α1, 1/α2, 1/α3, 1/α4), (16)

with an αj =
√

x2
j + y2j + f̂ 2 defining a point’s norm. The determinant constraint can be

formulated on the first matrix factor N only, giving a single equation on f̂ . Furthermore,
we have the following:

det(N) = f̂ det(L), (17)

with:

L =


x1 x2 x3 x4

y1 y2 y3 y4
1 1 1 1
α1 α2 α3 α4

 . (18)

Note that L contains the points’ norms αj which are functions of f̂ 2. Therefore, L is also

a function of f̂ 2. The coplanarity constraint ζ thus reduces to ζ( f̂ 2 ) = det(L( f̂ 2 )) = 0.
Let d2j = x2

j +y2j be the square distance of the image point to the origin and aj the signed
area of the triangle whose vertices are the remaining 3 points when point j is excluded
from a minimal 4-point set. By ordering the points along the occluding contour, all signed
areas are positive, hence aj > 0. The equation can then be written as a combination of
areas weighted by some function of the distance:

ζ( f̂ 2 ) = a1

√
d21 + f̂ 2 + a3

√
d23 + f̂ 2 − a2

√
d22 + f̂ 2 − a4

√
d24 + f̂ 2 = 0. (19)

19



This is a radical equation, given as the sum of a convex (the square root) and a concave
(the opposite square root) functions, which unfortunately cannot be solved in closed-
form. We thus search for a polynomial whose roots would contain the radical’s solution.
We define cj = ajαj and rewrite (19) as:

ζ( f̂ 2 ) = c1 − c2 + c3 − c4 = 0. (20)

In order to obtain a polynomial, we need to cancel all square roots appearing in each of
the cj terms by squaring them. We rewrite the equation as:

c1 + c3 = c2 + c4. (21)

We use a method involving three squaring rounds. The first squaring round and rear-
ranging gives the following:

c21 + c23 + 2c1c3 = c22 + c24 + 2c2c4

2(c1c3 − c2c4) = −c21 + c22 − c23 + c24.
(22)

The second squaring round and rearranging gives the following:

4
(
c21c

2
3 + c22c

2
4 − 2c1c2c3c4

)
=

(
−c21 + c22 − c23 + c24

)2
−8c1c2c3c4 =

(
−c21 + c22 − c23 + c24

)2 − 4
(
c21c

2
3 + c22c

2
4

)
.

(23)

The third squaring round finally gives the sought polynomial:

64c21c
2
2c

2
3c

2
4 =

(
−c21 + c22 − c23 + c24

)4
+ 16

(
c21c

2
3 + c22c

2
4

)2
−8

(
−c21 + c22 − c23 + c24

)2 (
c21c

2
3 + c22c

2
4

)
.

(24)

The total degree in f̂ 2 is 4, so this equation is a quartic. This is intuitive as the original
f̂ 2 is encapsulated in a square root; in other words, each c2i is linear in f̂ 2. Squaring to
obtain the quartic introduces spurious solutions. Specifically, we know that the solution
is part of the roots, so the quartic has at least 2 real roots (as complex roots come in
pairs, real roots too for an even degree polynomial). Overall, we thus have either 2 or 4
real roots. We solve for these roots and keep the solution which best satisfies the original
radical equation (19).

5.2.2 Least-Squares Solution to the Focal Length by Fitting Planes

We solve for f̂ by optimizing coplanarity of a non-circular sphero-ellipse’s m ⩾ 4 points
by forming a sphero-circle. This thus reconstructs simultaneously a focal length estimate
f̂ and a sphero-circle (i.e., ⊙ = [n⊤, c⊤, r ]⊤). We follow two steps.

First, we compute the coplanarity through the best-fitting plane of m points. To
do so, we calculate the singular values {λ1, λ2, λ3 } of a 3 × m matrix containing the
centered normalised points q̂i − q̂0, where point q̂0 is the centroid. The singular values
{λ1, λ2, λ3 } are in descending order. The first two singular values λ1 and λ2 encode the
cocircularity. The third singular value λ3 quantifies directly the coplanarity. Explicitly,
λ3 is the sum of squared distances of the points to the best-fitting plane.

Second, we optimize an initial focal length estimate f̂ by minimizing the following
coplanarity cost:

f̂ = argmin
f̂

λ3. (25)
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We note that λ3 is a function of { q̂i } which are functions of f̂ . Importantly, λ3 is a
continuous function of the matrix entries, from Weyl’s inequality. There is no closed-form
solution of the singular values in terms of the focal length. Hence we use gradient descent
for a numerical minimisation of cost (25). There are three solutions for f̂ ∈ {0, f ∗, ∞}.
Focal length f̂ = 0 is a singularity where all the normalised points converge to the sphero
great circle. Focal length f̂ = ∞ is another singularity where all the normalised points
converge to the sphero pole. Focal length f̂ = f ∗ is the correct solution and lies between
bounds flower and fupper which are usually known. We can bound the solution between

flower ⩽ f̂ ⩽ fupper to find a good estimate. The right-singular vector associated to
the minimized λ3 yields the sphero-circle’s support plane normal vector n. The sphero-
circle’s support plane depth is d

Π
= q̂⊤

0 n. It then follows section 4.1 to reconstruct the
sphere’s center.

5.3 Robust Solutions from Random Sampling

We perform sampling-based robust sphere and camera focal length reconstruction. We
present three robust methods. First, Robust-SpherOf-ScanN scans all the focal lengths
and applies a 3-point plane RANSAC per focal length. Second, Robust-SpherOf-Scan1
scans all the focal lengths and uses only one random 3-point plane sample per focal length.
Third, Robust-SpherOf-Quartic applies 4-point focal length RANSAC and inside 3-
point plane RANSACs. All the methods have the same inputs and outputs. The inputs
are the sphere’s occluding contour pixels, the sphere’s prescribed radius, the camera’s
principle point and the focal length bounds, and the coplanarity consensus threshold.
The outputs are the sphere of prescribed radius and the focal length estimate.

5.3.1 Robust-SpherOf-ScanN

We present Robust-SpherOf-ScanN in algorithm 2. Line 1 scans the focal lengths within

Algorithm 2 Robust-SpherOf-ScanN

Input: Sphere’s occluding contour pixels {pi | pi ∈ R2, i = {1, . . . ,m}, m ⩾ 4 },
sphere’s radius R ∈ R+ in metric units, and the camera’s principal point po and the
focal length bounds [flower, fupper], consensus threshold τpix ∈ R+ in pixels.

Output: Sphere s ∈ R4 and focal length estimate f̂ .

1: for f̂o from flower to fupper with a step of 1 pixel

2: { q̂i } = Spherical Normalisation({pi }, (f̂o, po) )
3: τ = Threshold Normalisation( τpix, f̂o )
4: C = RANSAC Coplanarity Consensus Set( { q̂i }, τ ) where C ⊆ { q̂i }
5: � = Stack Into Memory( C, f̂o )
6: end for
7: { C, f̂o } = Max Cardinality Consensus Set(� ) // robust initialization for (25)
8: {⊙, f̂ } = Refine Coplanarity( C, f̂o ) // minimize (25)
9: s = Sphere Recovery(⊙, R ) // section 4.1.3

the bounds with an incremental step of 1 pixel. Line 2 spherically normalizes the occlud-
ing contour using the chosen focal length. Line 3 transforms the coplanarity consensus
threshold from pixel units to a distance in the normalized image plane as τ = τpix/f̂o.
Line 4 applies RANSAC on samples of 3 points to form the best coplanarity consensus
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set for the chosen focal length. RANSAC iterates on each sample of 3 points to define (i)
a plane Π, (ii) a consensus threshold scaled by the plane’s depth τ

Π
= |d

Π
| τ , and (iii) a

consensus set using (i) and (ii). Line 5 stacks the coplanarity consensus set and its focal
length into the memory. Line 6 ends the scanning of the focal lengths. Line 7 retrieves
the largest consensus set and its corresponding focal length. This yields a robust initial
guess for the refinement. Line 8 refines the robust initial guess over the largest consensus
set by minimizing (25). This yields a focal length estimate and a sphero-circle. Line 9
retrieves the sphere of prescribed radius.

5.3.2 Robust-SpherOf-Scan1

We present Robust-SpherOf-Scan1 in algorithm 3. Line 1 initializes the focal length

Algorithm 3 Robust-SpherOf-Scan1

Input: Sphere’s occluding contour pixels {pi | pi ∈ R2, i = {1, . . . ,m}, m ⩾ 4 },
sphere’s radius R ∈ R+ in metric units, and the camera’s principal point po and the
focal length bounds [flower, fupper], consensus threshold τpix ∈ R+ in pixels.

Output: Sphere s ∈ R4 and focal length estimate f̂ .

1: f̂ = 0, iter = 0, N = 3 // initialize the variables
2: while ( f̂ < flower or f̂ > fupper ) and (iter < N)

3: for f̂o from flower to fupper with a step of 1 pixel

4: { q̂i } = Spherical Normalisation({pi }, (f̂o, po) )
5: { q̂1, q̂2, q̂3 } = Randomly Select 3 Points({ q̂i }) // one sample of 3 points
6: Π = Minimal Plane Solution( { q̂1, q̂2, q̂3 } )
7: τ = Threshold Normalisation( τpix, f̂o )
8: C = Coplanarity Consensus Set(Π, { q̂i }, τ ) where C ⊆ { q̂i }
9: � = Stack Into Memory( C, f̂o )
10: end for
11: { C, f̂o } = Max Cardinality Consensus Set(� ) // robust initialization for (25)
12: {⊙, f̂ } = Refine Coplanarity( C, f̂o ) // minimize (25)
13: iter = iter + 1
14: end while
15: s = Sphere Recovery(⊙, R ) // section 4.1.3

estimate and the loop parameters. Line 2 checks if the focal length estimate is within the
bounds. If not, then the focal length estimation is repeated maximum N times. Line 3
scans the focal lengths within the bounds with an incremental step of 1 pixel. Line 4
spherically normalizes the occluding contour using the chosen focal length. Line 5 selects
randomly one sample of 3 points from the spherically-normalized points. This is the
minimum number required to form a plane. Line 6 builds a plane from these 3 points.
Line 7 transforms the coplanarity consensus threshold from pixel units to a distance in the
normalized image plane as τ = τpix/f̂o. Line 8 forms the coplanarity consensus set with
respect to plane Π using a threshold scaled by its depth τ

Π
= |d

Π
| τ . Line 9 stacks the

coplanarity consensus set and its focal length into the memory. Line 10 ends the scanning
of the focal lengths. Line 11 retrieves the largest consensus set and its corresponding focal
length. This yields a robust initial guess within k-pixels neighborhood of the ground-truth
focal length. For instance, if there exists 50% erroneous points in the occluding contour,
then k = 35 pixels. Line 12 refines the robust initial guess of the largest consensus set
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by minimizing (25). This yields a focal length estimate and a sphero-circle. Line 13
increments the while loop counter. Line 14 ends the focal length estimation while loop.
Line 15 retrieves the sphere of prescribed radius.

5.3.3 Robust-SpherOf-Quartic

We present Robust-SpherOf-Quartic in algorithm 4. Line 1 initializes the RANSAC

Algorithm 4 Robust-SpherOf-Quartic

Input: Sphere’s occluding contour pixels {pi | pi ∈ R2, i = {1, . . . ,m}, m ⩾ 4 },
sphere’s radius R ∈ R+ in metric units, and the camera’s principal point po and the
focal length bounds [flower, fupper], consensus threshold τpix ∈ R+ in pixels.

Output: Sphere s ∈ R4 and focal length estimate f̂ .

1: N = ∞, iter = 0, ϵworst = 0.99, p = 0.99, s = 4 // RANSAC parameters
2: while(N > iter )
3: {p1, p2, p3, p4 } = Randomly Select 4 Points({pi }) // one sample of 4 points

4: f̂o = Focal from Quartic({p1, p2, p3, p4 }, po, [flower, fupper] )

5: { q̂i } = Spherical Normalisation({pi }, (f̂o, po) )

6: τ = Threshold Normalisation( τpix, f̂o )
7: C = RANSAC Coplanarity Consensus Set( { q̂i }, τ ) where C ⊆ { q̂i }
8: � = Stack Into Memory( C, f̂o )
9: {N, ϵworst } = Update Max Iter( |C|, ϵworst, p, s )
10: iter = iter + 1
11: end while
12: { C, f̂o } = Max Cardinality Consensus Set(� ) // robust initialization for (25)
13: {⊙, f̂ } = Refine Coplanarity( C, f̂o ) // minimize (25)
14: s = Sphere Recovery(⊙, R ) // section 4.1.3

parameters. N is the number of maximum iterations. ϵworst is the ratio of erroneous
points. p is the probability of success. s is the minimum number of points required to
solve for the focal length. Line 2 starts the RANSAC loop. Line 3 selects randomly 4
points from the image points. Line 4 computes the focal length from the roots of the
quartic polynomial which remains within the bounds. Line 5 spherically normalizes the
occluding contour using the computed focal length. Line 6 transforms the coplanarity
consensus threshold from pixel units to a distance in the normalized image plane as
τ = τpix/f̂o. Line 7 applies RANSAC on samples of 3 points to form the best coplanarity
consensus set for the computed focal length. RANSAC iterates on each sample of 3 points
to define (i) a plane Π, (ii) a consensus threshold scaled by the plane’s depth τ

Π
= |d

Π
| τ ,

and (iii) a consensus set using (i) and (ii). Line 8 stacks the coplanarity consensus set
and its focal length into the memory. Line 9 updates the number of maximum iterations.
Line 10 increments the RANSAC loop counter. Line 11 ends the RANSAC loop. Line 12
retrieves the largest consensus set and its corresponding focal length. This yields a robust
initial guess for the refinement. Line 13 refines the robust initial guess over the largest
consensus set by minimizing (25). This yields a focal length estimate and a sphero-circle.
Line 14 retrieves the sphere of prescribed radius.

23



5.4 Experimental Results

We compare the proposed three uncalibrated robust methods, Robust-SpherOf-ScanN,
Robust-SpherOf-Scan1 and Robust-SpherOf-Quartic, through synthetic and real data
experiments. In the sequel, we abbreviate them as ScanN, Scan1 and Quartic for the sake
of simplicity. In synthetic data experiments, we also included the proposed calibrated
method Robust-SpherO for comparison purposes.

5.4.1 Synthetic Data Experiments

We test the methods’ robustness against elliptic and non-elliptic occluding contours. The
ground-truth focal length f ∗ and the principal point po are generated randomly in each
and every reconstruction trial. The ground-truth focal length is generated between the
bounds flower ⩽ f ∗ ⩽ fupper where flower = 200 pixels and fupper = 2000 pixels.
The principal point is generated as po = [ xo ∼ N (µxo , σ

2) , yo ∼ N (µyo , σ
2) ]⊤ with

µxo = 1000 and µyo = 600 and σ2 = 50 pixels. RANSAC threshold τpix is the same for
all the methods and set as for all the experiments τpix = 1 pixel.

The graphs show the mean and standard deviation of the error. The errors are the
Euclidean distance to the ground-truth sphere centres and the difference from the ground-
truth focal lengths in terms of percentages. The graphs present the results against the
varying noise level, number of correct and erroneous points, occlusion level, depth and
occluding contour type. We repeated the experiments 1000 times for each value of a
varying parameter.

5.4.1.1 Robustness with Elliptic Occluding Contours

We formed the elliptic occluding contours. The sphere radius was R ∼ N (µR, σ
2
R) with

µR = 0.075 and σ2
R = 0.025 metres. The sphere centre was generated randomly in each

trial as C = [x ∼ N (µ, σ2) , y ∼ N (µ, σ2) , z ∼ N (µz, σ
2
z) ]

⊤ with µ = 0 and σ2 = 0.3
and µz = 4R and σ2

z = 2R metres.

Accuracy versus image noise. We varied the white Gaussian noise level from 1 to
10 pixels with step size of 1 pixel. Experiments were performed with 100 correct points.
Figure 9 shows that the three uncalibrated robust methods perform similarly well.

Accuracy versus number of correct points. We varied the number of correct points
from 10 points to 100 points with step size of 10 points. Experiments were performed
with 2 pixels white Gaussian noise. Figure 10 shows that the three uncalibrated robust
methods perform similarly well.

Accuracy versus number of erroneous points. We varied the erroneous point rate
from 5% to 75% with step size of 5% and using 100 points in each trial. Experiments
were performed with 2 pixels white Gaussian noise. Figure 11 shows that Quartic out-
performs Scan1 which outperforms ScanN. The accuracy of all the uncalibrated methods
substantially degrades after 40% of erroneous points.

Accuracy versus occlusion. We varied the occlusion level from 10% to 70% with step
size of 10% over 100 contour points. Figure 12 presents the results with 1 pixel white
Gaussian noise and 10% erroneous points. Quartic outperforms Scan1 and ScanN. A
breakpoint appears for all uncalibrated methods at 30% of occlusion.
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Figure 9: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus image noise levels.

Figure 10: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus number of correct points. Correct points belong to the occlud-
ing contour.

Accuracy versus depth. We varied the sphere’s depth along the camera’s optical axis
from 3R to 10R metres with a step size of R metres and using 100 points in each trial
with 2 pixels white Gaussian noise. Figure 13 shows that the three uncalibrated methods
perform similarly well up to 5R. After this point they perform worse.

5.4.1.2 Robustness with Non-elliptic Occluding Contours

SpherOf can also handle parabolic (i.e., C⊤z = R) and hyperbolic (i.e., C⊤z < R)
occluding contours, since it inherits this skill from SpherO. We tested Scan1, ScanN

and Quartic on the parabolic and hyperbolic occluding contours defined as in sec-
tion 4.3.1.1.2. We formed a parabolic occluding contour by placing the sphere centre
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Figure 11: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus erroneous point rates with 2 pixels noise. Erroneous points do
not belong to the occluding contour.

Figure 12: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus occlusion with 1 pixel noise and 10% erroneous points.

at C = [1.2, 0, 1]⊤ with radius R = 1 in metres. We formed a hyperbolic occluding
contour by placing the sphere centre at C = [0,−1.2, 0.8]⊤ again with radius R = 1
in metres. We made 10 trials on each occluding contour with 1 pixel image noise and
5% erroneous points. In each trial, the erroneous points were randomly chosen over 100
points which were also randomly chosen from the occluding contour. Figures 14 and 15
present the results. Three uncalibrated robust methods perform similarly well. ScanN

slightly outperforms Scan1 and Quartic.
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Figure 13: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus depth with 2 pixels noise.

Figure 14: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus parabolic occluding contours with 1 pixel noise and 5% erro-
neous points.

5.4.1.3 Discussion on Calibrated and Uncalibrated Methods

The calibrated robust method Robust-SpherO consistently outperforms the uncalibrated
methods in all experiments. Robust-SpherO is also stabler. In elliptic occluding contour
experiments, both the calibrated and uncalibrated robust methods have comparable ac-
curacies, if (i) the noise level is about 2 pixels, (ii) the erroneous point rate is lower than
10%, (iii) the occlusion level is lower than 30%, and (iv) the depth is lower than 5R.

5.4.2 Real Data Experiments

We compared Scan1, ScanN and Quartic using the occluding contours of three balls
shown in figure 16. The image resolution is 1920 × 1080 pixels. The ground-truth focal
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Figure 15: Mean and standard deviation of sphere centre (left, in mm) and focal length
(right, in %) errors versus hyperbolic occluding contours with 1 pixel noise and 5%
erroneous points.

length is f ∗ = 1364.6 pixels. We use bounds flower = 200 pixels and fupper = 2000 pixels.
The given principal point is po = [ 979.227, 536.237 ]⊤ pixels. RANSAC threshold is
set as τpix = 0.1 pixels. The balls are approximately 30 cm away from the camera. The
football’s radius is 8.5 cm. The green ball’s radius is 4 cm. The yellow ball’s radius is
3.5 cm. We used Robust-SpherO to compute the balls’ centres and considered them as
the ground-truths. Fastest runtimes are denoted as 1x in tables below.

Figure 16: The balls with their segmented occluding contours.

Table 4 presents the reconstruction errors of the three methods using the football’s
occluding contour as well as the runtimes. Table 5 presents the reconstruction errors
of the three methods using the green ball’s occluding contour as well as the runtimes.
Table 6 presents the reconstruction errors of the three methods using the yellow ball’s
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Table 4: Reconstruction errors using football’s occluding contour and runtimes.

Focal length Sphere centre Runtime

Robust-SpherOf-Scan1 3.15% 7mm 1x
Robust-SpherOf-ScanN 0.8% 2.1mm 531x
Robust-SpherOf-Quartic 1% 2.6mm 935x

Table 5: Reconstruction errors using green ball’s occluding contour and runtimes.

Focal length Sphere centre Runtime

Robust-SpherOf-Scan1 2.8% 7.8mm 1x
Robust-SpherOf-ScanN 0.5% 1.13mm 73x
Robust-SpherOf-Quartic 1.6% 5.1mm 1.6x

occluding contour as well as the runtimes.

Table 6: Reconstruction errors using yellow ball’s occluding contour and runtimes.

Focal length Sphere centre Runtime

Robust-SpherOf-Scan1 2.5% 6.6mm 1.2x
Robust-SpherOf-ScanN 1.9% 5.5mm 40x
Robust-SpherOf-Quartic 1.6% 4.2mm 1x

6 Conclusion

We have proposed two novel methods SpherO and SpherOf to reconstruct a sphere from
a single view of its occluding contour. SpherO reconstructs a sphere of a prescribed
radius from a single calibrated view of its occluding contour. It is accurate, simple and
fast. Its robustified version Robust-SpherO outperforms the state of the art. In addition,
SpherO provides a closed-form, convex solution for the image conic from the sphere’s
occluding contour points, minimising a geometric error criterion. SpherOf reconstructs
simultaneously a sphere of a prescribed radius and the unknown camera focal length from
a single view of the sphere’s occluding contour given the principal point. SpherOf inherits
all the advantages of SpherO. It is the first minimal method which can reconstruct a sphere
and the camera focal length from 4 points. Its robustified versions Robust-SpherOfs
form the state of the art. We also highlight that SpherOf can be directly extended to
a multi-view method. More precisely, it can allow one to locate an uncalibrated camera
(without knowing the focal length) thanks to a sphere. As the scale of an uncalibrated
reconstruction is arbitrary, it is indistinguishable from the sphere’s radius. We can thus
reconstruct with a simple two-step algorithm: (i) randomly choose a radius R > 0, and
(ii) for i = 1 to n (the number of images), use SpherOf to reconstruct the camera pose i
and the focal length i. As future work, we shall (i) address the reconstruction of a sphere
from multiple uncalibrated views of its occluding contour, (ii) study the reconstruction
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of different geometric objects such as the ellipsoid and the circle, and (iii) propose a
theoretical framework to study the degenerate cases in both problems.
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