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Abstract
Purpose. Augmented reality for monocular laparoscopy from a preoperative volume such as
CT is achieved in two steps. The first step is to segment the organ in the preoperative vol-
ume and reconstruct its 3D model. The second step is to register the preoperative 3D model
to an initial intraoperative laparoscopy image. To date, there does not exist an automatic
initial registration method to solve the second step for the liver in the de facto operating
room conditions of monocular laparoscopy. Existing methods attempt to solve for both de-
formation and pose simultaneously, leading to nonconvex problems with no optimal solution
algorithms.
Methods. We propose in contrast to break the problem down into two parts, solving for (i) de-
formation and (ii) pose. Part (i) simulates biomechanical deformations from the preoperative
to the intraoperative state to predict the liver’s unknown intraoperative shape by modeling
gravity, the abdominopelvic cavity’s pressure and boundary conditions. Part (ii) rigidly reg-
isters the simulated shape to the laparoscopy image using contour cues.
Results. Our formulation leads to a well-posed problem, contrary to existing methods. This
is because it exploits strong environment priors to complement the weak laparoscopic visual
cues.
Conclusions. Quantitative results with in-silico and phantom experiments and qualitative
results with laparosurgery images for two patients show that our method outperforms the
state-of-the art in accuracy and registration time.

Keywords liver registration · monocular laparoscopy · biomechanical simulation

1 Introduction

Context. Augmented reality (AR) is a promising guidance system for monocular liver la-
paroscopy. However it requires an initial liver registration, for which there has been so far
no automatic solution in monocular laparoscopy. We address this initial liver registration
problem, which is more precisely to register a patient’s preoperative 3D liver model to an
intraoperative laparoscopy image. The term ‘initial’ is because the registration could be up-
dated in a later stage to cope with laparoscope motion. We use MITK’s region-growing
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tool [1] to segment and reconstruct the 3D liver model from the patient’s preoperative CT
volume. The 3D model contains the key anatomical parts such as the tumors and veins,
necessary for AR guidance.

The registration problem. Initial liver registration in monocular laparoscopy is extremely
difficult to solve. This is because the monocular laparoscope does not provide depth and
thus the registration has to be a multimodal and volume-to-image one. Furthermore, the
liver is deformed (due to gravity and the pneumoperitoneum) and only partially visible in the
laparoscopy image. This implies that the visual cues constrain the registration only locally.
Therefore, formulating registration based on only the visual cues from a laparoscopy image
is likely to be ill-posed and to have multiple weakly constrained solutions.

Existing work and remaining challenges. The literature in image-guided surgery is sub-
stantial. We therefore focus our review on the initial registration problem in monocular
laparoscopy. Several methods have been proposed to solve initial liver registration. Un-
fortunately, none of them works in de facto conditions of a monocular laparoscopy pro-
cedure [2,3] but two recent semi-automatic methods [4,5]. However, the methods [4,5] still
leave room for improvement. The method [4] takes neither gravity load nor the pneumoperi-
toneum pressure into account in registration. It computes registration using only the weak
laparoscopy visual cues, which consequently degrades progressively in unseen parts of the
liver. The method [5] takes only the pneumoperitoneum pressure into account in registration
and requires a very good initialization to avoid local minima. From a gravity compensation
viewpoint, all existing methods using a biomechanical model for registration in laparoscopy
ignore the gravity load and use the biomechanical model reconstructed from a segmented
preoperative CT as an undeformed and stressless reference model. Because this model is
in fact gravity-loaded, running a laparoscopic pneumoperitoneum simulation with it as the
reference model [5–8] generates inaccuracies. Only [9] compensates for the gravity load
by reversing its direction before applying laparoscopic pneumoperitoneum simulation for
surgical planning purposes. However [9] does not solve registration. From an optimization
viewpoint, existing methods for the liver solve the initial deformable registration problem by
optimizing for both deformation and pose in a single step using only the weak laparoscopy
visual cues [4,5]. This yields nonconvex problems, which cannot be solved unless a very
good initialization is provided. From an automation viewpoint, this initialization require-
ment and also the laparoscopy image processing (i.e., detection and recognition of anatom-
ical landmarks and contours) make the current registration methods very unlikely to be au-
tomated in monocular laparoscopy.

There exist advanced methods which solve the initial registration automatically but were
designed to work in different conditions from monocular liver laparoscopy. The method [10]
requires multiple intraoperative images of a fully visible and rigid organ for rigid registration
using the silhouette; the method [11] requires an intraoperative CT scan for rigid registration
using shading; the method [12] requires multiple cameras for grabbing rigid views of the
organ to build a silhouette-based visual hull for deformable registration, and provides results
only for simulated data. We remark that depth-based methods using stereo such as [13,14]
form a vast part of the literature. Knowing depth greatly simplifies registration, as can be
seen in [13,14] and references therein. However, stereo is not commonly available in the
current surgical theatres and hence we do not consider it available.

One of the current challenges in monocular liver laparoscopy is to exploit both the en-
vironment priors (gravity and the pneumoperitoneum) and the visual cues to improve regis-
tration.
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Proposed solution and experimental validation. We propose a semi-automatic solution to
the initial liver registration problem. Its inputs are the liver’s preoperative 3D model and a
single laparoscopy image. It thus complies well with monocular laparoscopy and exploits
both the environment priors and visual cues. We formulate the deformable registration prob-
lem as two consecutive subproblems, solving for (i) deformation and (ii) pose. Both sub-
problems are well-posed and well-constrained. We solve subproblem (i) by simulating the
biomechanical deformations between the preoperative and intraoperative states to predict
the liver’s unknown initial intraoperative shape. This requires us to simulate first the grav-
ityless shape from the gravity-loaded preoperative 3D model in supine orientation and then
the shape under pneumoperitoneum pressure and gravity-load in a reverse trendelenburg
orientation. We then solve subproblem (ii) by registering rigidly the simulated shape to the
input laparoscopy image using contour cues. These visual cues combine the liver’s silhou-
ette and a few curvilinear anatomical landmarks. They are marked on the input laparoscopy
image by the user. Their corresponding location on the preoperative 3D model is then as-
signed automatically. The proposed solution is validated quantitatively with in-silico and
phantom experiments and qualitatively with in-vivo laparoscopy images.

2 Methodology

2.1 Overview

We show in Figure 1 the pipeline of the proposed initial registration solution, whose six
main stages are as follows. (i) We segment the liver and its surrounding structures such as
the abdominal wall and the scanning table in the CT volume. The segmented liver forms a
gravity-loaded shape. This shape defines a connected subset of R3 which we tessellate and
represent as a tetrahedral mesh. Following [15], each vertex is considered a particle with an
associated mass. The liver’s mass is computed by multiplying its volume with the human
liver density ρ = 1020 kg/m3 [16]. (ii) We compute the gravity direction from the scanning
table’s surface normal. (iii) We simulate backward to remove the gravity deformation from
the segmented liver shape. (iv) We simulate forward to exert pneumoperitoneum pressure
and gravity in reverse trendelenburg orientation. (v) We grab a maximally zoomed-out la-
paroscopy image and mark the liver contours. (vi) Finally, we compute the pose and augment
the laparoscopy image.

It is critical to minimize the amount of time required in the OR and precompute as much
results as possible, since before surgery computation time is virtually unlimited. Stages (i)
to (iii) are obviously done in the preoperative step. However, in stage (iv) the reverse tren-
delenburg orientation required to define the gravity direction only becomes available at the
time of surgery. Nonetheless, we know that it covers a range from 0◦ to 30◦. We therefore
propose to accelerate the registration by also solving (iv) in the preoperative step by varying
the gravity direction with a 1◦ step and storing all results. This step size is reasonable due to
the±0.3◦ uncertainty in angle measurement with a smartphone [17] and a small uncertainty
that might exist on the patient’s pose on a cushion-covered surgery table. Only stages (v) and
(vi) need to be solved in the intraoperative step. In stage (v), we do not need to compensate
for the laparoscope movement, the breathing and the heartbeat, since the liver’s contours
are marked on a single grabbed image. The pose computation in stage (vi) uses the shape
retrieved from the stored set of precomputed simulated shapes, using the smartphone’s angle
measurement.
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Fig. 1 Pipeline of the proposed initial liver registration and augmentation solution.

2.2 Backward-Forward Biomechanical Simulations

We describe our solution to stages (iii) and (iv) of the pipeline, corresponding to gravityless
shape simulation and shape under gravity and pressure simulation, respectively.

2.2.1 Gravityless Shape Simulation

Proposed solution. Gravityless shape simulation is a backward simulation problem. It can
be solved by either analytical methods designed for a specific biomechanical model [18] or
fixed-point iterative algorithms using forward simulations [19–22]. Both ways yield similar
solutions [23]. We adopt a fixed-point algorithm because it handles biomechanical deforma-
tion models generically (Algorithm 1). The principle is to initialize the shape, simulate for-
ward from it, and update the shape by comparing with the measured, gravity-loaded shape.
We use the Neo-Hookean model. We set the human liver’s mechanical parameters as 60 kPa
for Young’s modulus and 0.49 for Poisson’s ratio. In Algorithm 1, line 02 performs a for-
ward deformation simulation from the gravityless shape estimate using the known gravity
forces and the boundary conditions. Forward deformation simulation is a solved problem.
Therefore any FEM library can be used to implement the Simulate Deformation func-
tion. We use our own implementation of [15,24]. Then, in Algorithm 1, lines 03 and 04
use the shape discrepancy 4M to update the gravityless shape estimate. Finally, the algo-
rithm stops when either a shape from the forward simulation converges to the gravity-loaded
shape or the maximum number of iterations is reached. Convergence is assessed using the
root mean squared (RMS) value of the shape discrepancy.

Boundary conditions. As boundary conditions, we constrain the depth of a set of points. The
depth-constrained points are allowed to move in any direction but not deeper than where they
initially were along the gravity direction. The depth-constrained points are chosen on the
gravity-loaded preoperative 3D model’s surface below a level and form a bathtub shape to
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Procedure: Gravityless Shape
Inputs: Preoperative shapeMG, gravity forces { fg }, boundary conditions B
Output: Gravityless shapeM0

00: M0 = MG , i = 0

01: while ( i++ < maxiter )

02: M̂G = Simulate Deformation (M0, { fg }, B,Mrest = M0 )

03: 4M = MG − M̂G

04: if ( RMS(4M ) > ε ) then , M0 = M0 + 4M , else , break , end

05: end

Algorithm 1: Fixed-point iterative algorithm for estimating the gravityless shape. We use
the boundary conditions B = {depth constraints}, a precision threshold ε = 10−3 m
and a maximum number of iterations maxiter = 10. Mrest represents the reference
unstressed shape for the forward deformation simulation.

prevent the model falling freely under the forward gravity simulation. This gives the model
enough flexibility to reach its gravityless shape. This is the shape that would be naturally
taken by the liver in an unconstrained environment. Figure 2 shows an example.
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Fig. 2 The left image shows an axial CT slice (viewed from head-to-feet) with the segmented liver (red) and
its depth-constrained surface (dashed green) below the horizontal white line, and the gravity direction (green
arrow orthogonal to the scanning table’s flat surface). The middle image shows the simulated gravityless
shape (red opaque) viewed over the gravity-loaded shape (transparent) and the gravity direction (arrow). The
right graph shows the evolution of RMS(4M) versus the iteration of Algorithm 1. The gravityless liver shape
seen in this figure corresponds to patient-A in §4.3.

2.2.2 Shape under Gravity and Gas Pressure Simulation

Proposed solution. Shape prediction under gravity and gas pressure is a forward simula-
tion problem. It is solved in the preoperative step for a range of orientations able to ex-
press the possible surgical setups (Algorithm 2). The abdominal cavity is initially pres-
surized to 15mmHg for safe trocar placement. The pressure is then lowered to the stan-
dard operating value of 12mmHg. In Algorithm 2, line 02 computes the particles’ pres-
sure forces for the current shape estimate of the liver and line 03 performs one time-step
of forward deformation simulation using the given forces and boundary conditions. As
in the backward simulation of §2.2.1, we use our own implementation of [15,24] for the
Simulate Deformation For One Time Step function. If the simulation has not converged,
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line 05 updates the liver shape. Finally, Algorithm 2 stops when either the simulation con-
verges or the maximum number of iterations is reached.

Procedure: Initial Intraop Shape
Inputs: Gravityless shapeM0, gravity forces { fg }, gas pressure p, boundary conditions B
Output: Initial intraoperative shapeM
00: M = M0 , i = 0

01: while ( i++ < maxiter )

02: { fp } = Compute Particles Pressure Forces (M, p )

03: M̂ = Simulate Deformation For One Time Step (M, { fp + fg }, B,Mrest = M0 )

04: 4M = M̂ − M

05: if ( RMS(4M ) > ε ) then ,M = M̂ , else , break , end

06: end

Algorithm 2: Algorithm for estimating the initial intraoperative shape with gas pressure
p = 12mmHg and boundary conditions B = { plane constraint }. We use a precision
threshold ε = 10−6 m and a maximum number of iterations maxiter = 103. Mrest

represents the reference unstressed shape for the forward deformation simulation.

Boundary conditions. The abdominal cavity packs the soft organs compactly and allows
them to slide past each other. In the cavity, the liver’s lower visceral surface sits perfectly like
a hat on top of the other organs. We have observed that, in a pressurized abdominal cavity,
after the liver is separated from its falciform ligament, it gains enough mobility to float
over the other organs. In order to observe and understand this phenomenon, we respectively
pressurized, de-pressurized and re-pressurized the abdominal cavity between about 5mmHg
and 12mmHg. This generated a tide-like motion of the liver within a few centimeters, as
can be seen in Figure 3. Therefore, as boundary conditions, we let the simulated liver freely
deform and slide on a plane. This plane represents roughly the contact surface between the
liver and the other organs. We obtain the plane as the best fit to the visceral contact surface
of the gravityless preoperative 3D liver model.

2.3 3D Pose from 2D Contours Computation

We describe our solution to stage (vi) in the pipeline. Matching points automatically be-
tween the textureless preoperative 3D model and an input laparoscopy image is an unsolved
problem. Consequently, we face a 3D pose computation problem from a single 2D image in
the absence of point correspondences. However, we can count on liver contour correspon-
dences (the silhouette and the ridge and falciform ligament contours) which can be quickly
established semi-automatically between the image and the preoperative 3D model follow-
ing [4]. We then run an iterative closest point (ICP) algorithm to solve the 3D pose of the
model from these correspondences (Algorithm 3). In Algorithm 3, line 02 computes the
3D model contours corresponding to the marked image contours; line 03 projects the 3D
model contours onto the image; line 04 computes the closest 3D-2D point pairs between
the projected 3D model contours and their corresponding marked image contours; line 05
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Pressurized De-pressurized Pressurized

Fig. 3 Liver deformation at a 12mmHg pressure (left), at about 5mmHg (middle) and again at a 12mmHg
pressure (right). We observed that the liver floats up (middle) or sinks down (right) up to a few centimeters
with respect to its surrounding structures. We marked the same piece of contours on the liver (white dashed)
and the stomach (green dashed) for each image to ease the observation of displacements. The arrows show
the liver’s displacement direction.

Procedure: 3D Pose from 2D Contours
Inputs: Initial intraoperative shapeM, marked image contours { c image, labels }
Output: Registered shapeM
00: i = 0

01: while ( i++ < maxiter )

02: {Cmodel } = Compute 3D Contours (M, labels )

03: { cmodel } = Project 3D Contours ( {Cmodel } )
04: {Pmodel, p image} = Closest Point Pairs ( { cmodel }, { c image }, labels, {Cmodel } )
05: T = Compute Pose ( Pmodel, p image, ‘perspective-n-point algorithm’ )

06: M̂ = Update Model ( T ,M )

07: 4M = M̂ − M
08: if ( RMS(4M ) > ε ) then ,M = M̂ , else , break , end
09: end

Algorithm 3: Pose computation from 3D-to-2D contour correspondences. We use a pre-
cision threshold ε = 10−6 m and a maximum number of iterations maxiter = 20. A
label ∈ {silhouette, ridge, falciform ligament} indicates the type of a marked curve.

computes the best pose between these 3D-2D point pairs using the perspective-n-point al-
gorithm [25]; and in lines 01 to 09, the while loop iterates until the pose converges or the
maximum number of iterations is reached.

3 Experiments

3.1 Compared Methods

We compare our method with deformable [4] and rigid [2] registration, referred to as
deformable and rigid, respectively. Both deformable and rigid use directly the
segmented preoperative 3D model in registration and thus do not exploit environment priors.
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3.2 Validation

We provide the following experiments to validate the proposed initial liver registration
method: (i) quantitative in-silico experiments using patient-A’s segmented liver model from
their preoperative CT scan, (ii) quantitative phantom experiments, and (iii) qualitative in-
vivo experiments with patients A and B’s laparosurgery images.

3.2.1 Quantitative In-silico Experiments

Setup. Regardless of how different the compared registration methods are, there exist two
important factors which may directly affect their accuracy: the initialization of the preoper-
ative 3D liver model and the visibility of the patient’s liver in the laparoscopy image. We
therefore conducted two sets of quantitative simulations to evaluate these. First, we evalu-
ated the convergence of the registration algorithms under seven different initial poses of the
preoperative 3D model while the visibility of the contours was kept fixed. Second, we eval-
uated the convergence of the registration algorithms under four different visibility levels of
the contours while the initial pose of the preoperative 3D model was kept fixed. To be able to
evaluate the registration quantitatively, we assumed ideal conditions where the patient’s liver
model is deformed only under the known gravitational force, pneumoperitoneum pressure
at 12mmHg and the boundary conditions. We used these deformed shapes as ground-truth
and rendered their synthetic images to form the input laparoscopy images. Registration ac-
curacies were expressed as RMS of the errors (RMSE) between the corresponding points of
the ground-truth shape and the registered shapes. We also remark that in quantitative simu-
lations deformable does not exploit the approximate end points of the ridge contour as
correspondences.

Registration accuracy versus pose initialization. An insufflated abdominal cavity forms an
encapsulated space for the liver. In this space, an approximate automatic initialization for
the liver pose can be computed from the preoperative radiological data as in [4]. In this
automatic initialization, it is assumed that the laparoscope’s keyhole is located near the belly
button and the laparoscope is directed at the patient’s liver. Consequently, the liver is located
approximately in the center of the laparoscope’s field of view. This field of view’s major
radius does in practice not exceed 10 cm and the automatic initialization falls easily into it.
We therefore progressively increased the displacement perturbations from the ground-truth
with a step of 1% magnitude and up to 7%, and evaluated convergence. Results are presented
in Figure 4. A 1% magnitude perturbation in Figure 4 corresponds to a 1 cm translation and
10◦ of rotation about a random axis.

Registration accuracy versus contour visibility. A piece of the liver’s silhouette is always
visible on the upper convex diaphragmatic surface while the rest is usually occluded by the
other organs and fat. A piece of the liver’s ridge contour between its convex and concave
parts is always visible on the lower part while the rest is usually occluded by the liver itself,
other organs and fat. The falciform ligament might be partially visible or not visible at
all. One can observe these instances in Figures 3 and 8. We therefore started convergence
simulations with an initial piece of silhouette (less than half of the full silhouette) from the
upper convex surface and an initial piece of ridge contour (less than half of the full ridge
perimeter) from the lower part. We then progressively decreased the visibility level of these
pieces of contour and evaluated convergence performance. Results are presented in Figure 5.
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3.2.2 Quantitative Phantom Experiments

We simulated the deformation induced by the pneumoperitoneum pressure on a patient’s
gravityless preoperative 3D liver model. We then 3D printed out the mold of the deformed
3D liver model to eventually create its silicone phantom. We placed the phantom in a differ-
ent pose compared to preoperative CT scanning, in order to obtain a realistic gravity-induced
deformation, similarly to the reverse trendelenburg position. The resulting ground-truth
shape was then acquired by structured-light 3D scanning using a turntable (DAVID SLS-
3 3D Scanner). The ground-truth shape thus encodes both gravity and pneumoperitoneum
deformation. Figure 6 shows the steps of the phantom dataset preparation. The ground-truth
shape’s top part has less visibility in the camera and the bottom part was mostly occluded
during scanning. Therefore, it has two holes, one on the top and one at the bottom. Figure 7
shows the registration results of the compared methods.

3.2.3 Qualitative In-vivo Experiments

We compared our registration solution to existing methods qualitatively for in-vivo laparo-
surgery images of two patients, A and B. The laparoscopes used for patients A and B were
calibrated using images of a checkerboard and Agisoft’s Lens software. The laparoscopes’
focal lengths were 992 pixels for patient-A and 932 pixels for patient-B.

Patient-A. Figure 8 shows the segmented model from the CT volume, an input image and a
control image of patient-A for qualitative comparison of the registrations. The control image
shows the liver with the same deformation but from a different viewpoint. The left-most half
of the control image reveals a part of the liver which is unseen in the input image. Patient-A
was aligned at a 20◦ reverse trendelenburg orientation and undergoing a right hepatectomy.
Results of patient-A are presented in Figure 9.

Patient-B. Figure 10 shows the segmented model from the CT volume, an input image and a
control image of patient-B. Patient-B was aligned at a 15◦ reverse trendelenburg orientation
and undergoing a segmentectomy 6. For patient-B, we did not have a control image with
the same liver deformation but a similar deformation from a different viewpoint. The slight
difference in deformation is due to an instrument lifting the liver in the lower part of the
control image. Results of patient-B are presented in Figure 11.

3.3 Registration Uncertainty

We provide an optimistic estimate, and thus a lower bound, on the registration uncer-
tainty. In our experiments, the quantifiable uncertainties arise from three main sources: (i)
the voxel size in the CT volume, (ii) the technique used for liver segmentation and 3D
model reconstruction from the CT volume and (iii) the imprecision of contour localization
in the laparoscopy image. We now quantify the uncertainties of these sources. A typical
CT voxel size used in preoperative scanning is 0.5mm × 0.5mm × 1mm. This intro-
duces a positional uncertainty of approximately ui ≈ ±1.2mm. We assume that there
exists a systematic error of 1% in the volume segmentation and 3D model reconstruction
techniques for the liver shape. This introduces a positional uncertainty of approximately
uii ≈ ±2.5mm, considering that the average dimensions of an adult human liver is 10 cm
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× 15 cm × 20 cm. We assume that there exists a systematic error of 1% in contour local-
ization in the typical laparoscopic surgery setting. This introduces a positional uncertainty
of approximately uiii ≈ ±2mm, considering a maximally zoomed-out laparoscope whose
focal length is around 1000 pixels, image size is 1920 × 1080 pixels, and visualizing the
liver at a distance of approximately 10 cm. Finally, adding these uncertainties in quadra-
ture yields approximately uq ≈ ±3.5mm uncertainty on the registration accuracy, where
uq =

√
u2i + u2ii + u2iii. We remark that there also exist other sources of uncertainties.

These are due to the imprecisions of gravity direction measurement, the elastic model (ho-
mogeneous tissue, isotropic behavior, generic parameter values) used to simulate the liver’s
deformation and the boundary conditions.

4 Results

4.1 Quantitative Results for the In-silico Experiments

Registration accuracy versus pose initialization. We observe in Figure 4 that all methods
are rather insensitive to initialization within the laparoscope’s field of view, and that ours is
consistently and substantially more accurate.
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Fig. 4 Quantitative comparison of registration. The left image shows the ground-truth shape with the marked
contours. The right graph shows the RMSE versus initial pose perturbation.

Registration accuracy versus contour visibility. We observe in Figure 5 that the accuracy
of all methods gently degrades with an increasing level of occlusion and that ours remains
more accurate.
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Fig. 5 Quantitative comparison of registration. The left image shows the ground-truth shape with the marked
contours and their visibility field of view circles. From the largest to the smallest, the field of view circles
occlude approximately 10%, 20% and 30% of the marked contours, respectively. The right graph shows the
RMSE versus contour occlusion level.
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Registration time. We report the computation time for the main loop of each method. Both
rigid and the proposed registration methods take about 45 seconds on average, while
deformable [4] takes about 150 seconds on average.

4.2 Quantitative Results for the Phantom Experiments

We observe in Figure 7 that the proposed method registers better on the lower part of phan-
tom on the input and it has lower 3D errors than deformable and rigid. The proposed
method’s minimum, maximum and average 3D errors are 0.1mm, 33.6mm and 11.2mm
(stdv. 5.7mm), respectively. deformable’s minimum, maximum and average 3D errors
are 0mm, 38.6mm and 13.4mm (stdv. 7.1mm), respectively. rigid’s minimum, maxi-
mum and average 3D errors are 0.1mm, 43.2mm and 18.9mm (stdv. 9.3mm), respectively.
We also observe in Figure 7 that the depth error for all the methods increases away from the
phantom’s silhouette. This is explained by the fact that the silhouette gives a strong registra-
tion constraint, whose influence naturally decreases with an increasing distance to it. Though
all the methods present this common trend, ours remains consistently more accurate.

Structured-light 3D scanner setup Input imageMold and silicone phantom

Fig. 6 The silicone phantom’s mold, scanning setup and an input image with marked contours for testing the
compared methods.
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Fig. 7 The first row shows the registration for the compared methods. The second row shows the colormapped
3D errors (mm) from different viewpoints on the ground-truth shape measured with respect to the registered
shapes in terms of the closest point distances.
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4.3 Qualitative Results for Laparosurgery Images

Patient-A. In the first row of Figure 9, we observe that the proposed registration and
deformable match the observation well. On the other hand, in the second row, we ob-
serve that the proposed registration covers substantially better the deformation of the unseen
part. This is because deformable optimizes the deformation using only the input im-
age, which contains no information about the unseen part and therefore constrains the shape
weakly and locally. In contrast, ours optimizes the deformation using the strong environ-
ment priors (pneumoperitoneum pressure and gravity) which constrain the shape globally.
In this case, rigid was significantly worse.

Input image Control image

Same deformation

Segmented model from CT

Fig. 8 Patient-A. The segmented liver model with the tumor (yellow) from the CT volume, an input image
and a control image for qualitative comparison of the registrations. The control image shows the liver with
the same deformation from a different viewpoint.
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Fig. 9 Patient-A. Qualitative comparison of in-vivo registrations for the images seen in Figure 8. On the
input image, both deformable and the proposed registration look convincing. In the second row, we check
the quality of the registered shapes by rigidly aligning them to the control image.

Patient-B. Figure 11 shows in the first row the results of rigid, deformable and the
proposed method on the input image and in the second row the rigid alignment of the regis-
tered shapes on the control image. On the input image, we see that both deformable and
the proposed registration match the observed shape to a good extent, which are satisfying
results. rigid matches worse than the others in the rightmost side of the input image. On
the control image, it is difficult to tell which method is better than the other. Nonetheless, the
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proposed registration’s shape matches well overall, except for the lower part of the image
where the slight deformation occurred.

Input image Control image

Similar deformation

Segmented model from CT

Fig. 10 Patient-B. The segmented liver model with the tumor (yellow) from the CT volume, an input image
and a control image for qualitative comparison of the registrations. The control image shows the liver with a
similar deformation from a different viewpoint.
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Fig. 11 Patient-B. Qualitative comparison of in-vivo registrations for the images seen in Figure 10. On the
input image, both deformable and the proposed registration look convincing. In the second row, we check
the quality of the registered shapes by rigidly aligning them to the control image.

5 Discussion

About the boundary conditions. The accuracy of the proposed solution depends on the
boundary conditions used in the forward simulation given in Algorithm 2. The identifica-
tion of these boundary conditions in liver deformation simulation is very difficult [26] and
still forms an open problem. The difficulty comes from the imprecise localization of the
liver’s ligament connections in the preoperative CT images, the ligaments’ unknown soft
behavior and the liver’s unknown mobility space. Furthermore, all these are patient-specific.
However, we showed that the proposed solution using even a simple approximation of these
conditions has the potential to beat the state-of-the-art. We therefore emphasize the impor-
tance of the identification of boundary conditions in liver deformation simulation for future
research. Learning-based methods are also attractive for this problem [6]. However, they
raise the problem of collecting enough data, which are known to be scarce.
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Impact of the proposed method. The proposed method breaks the initial liver registration
problem down into the deformation simulation and pose estimation subproblems. This has
two important impacts. First, the proposed method is robust to initialization far from the
solution. Second, it allows one to compensate the gravity-load in monocular laparoscopic
liver registration in the de facto OR conditions for the first time. The gravity-load has not
been compensated by previous liver registration methods, because it is not possible to know
the gravity direction in the laparoscope’s coordinate frame when both the deformation and
pose are optimized simultaneously.

Integration into the standard OR. The proposed method is a semi-automatic solution. It
requires one to perform two manual tasks during surgery: (i) measuring the surgery table’s
tilt angle and (ii) outlining the liver’s contour on the laparoscopy image. Once the two tasks
are performed, the method has all the inputs it needs to produce a solution automatically in
45 seconds. It is possible to perform the manual tasks in the surgical work flow relatively
fast. Task (i) can be performed by an assistant using either a smartphone or an accelerometer
once the patient’s position is fixed at the very beginning of surgery. Therefore it is completely
unobtrusive to the surgeon. Task (ii) requires an assistant under the surgeon’s supervision
to interact with a screen using either a mouse or, if the screen is tactile, their finger. In
the mouse case, the assistant clicks a sparse set of points on the liver’s partly visible and
smooth contours to mark them in the image. Such contours on the laparoscopy images are
observable in Figures 3, 8 and 10. For instance, the liver’s visible upper silhouette requires
clicking about 10 points. The ridge contour also requires clicking about 10 points. The
falciform ligament requires clicking only 2 to 3 points and sometimes may not be visible. It
takes the assistant about 30 seconds on average to mark the liver’s contours by clicking in the
laparoscopy image. In the tactile screen case, the surgeon sweeps their finger on the liver’s
contours to mark them in the laparoscopy image. This is usually a lot faster than clicking.
Overall the surgeon spends less than 2 minutes to produce an augmented laparoscopy image.
The proposed method has the potential to speed up surgery by revealing the internal anatomy
of the liver before resection takes place.

6 Conclusion

We have proposed to formulate the initial liver registration problem in monocular la-
paroscopy as two well-posed successive subproblems: deformation simulation in the pre-
operative step and pose computation in the intraoperative step. Consequently, we have been
able to provide a better constrained and faster solution compared to the state-of-the-art. This
is the first solution which compensates the gravity load in liver registration. Contrary to oth-
ers, the proposed solution can be adopted directly in the de facto OR conditions. As future
research, we shall (i) study the boundary conditions for the forward-simulation algorithm,
(ii) push further the in-vivo quantitative evaluation of registration, (iii) improve registration
by iterating between the deformation simulation and pose computation stages and updat-
ing the boundary conditions in order to minimize contour overlap errors on the laparoscopy
image, and (iv) explore deep learning approaches to automate contour marking.
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