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Abstract— Shape control is a challenging manipulation prob-
lem which requires driving an object to a desired shape.
The difficulty comes from the under-actuation of the object
being manipulated, which depends on both the object and
environment dynamics. Several shape servoing techniques make
use of purely geometric heuristics to manipulate the object into
the desired shape. While reliable in contexts with approximately
linear behavior and simple environmental contacts, they can fail
in tasks with more complex dynamics. An alternative approach
is to have a robot learn directly from real experience how to
achieve a shape control task, e.g. using Reinforcement Learning
(RL). In this work we investigate offline RL for shape control
of a Deformable Linear Object (DLO) manipulation task, with
long-term effects. We propose a data augmentation approach,
to limit the amount of experimental data which needs to be
collected. With this augmentation, the TD3+BC algorithm is
able to outperform the classical shape servoing baseline.

I. INTRODUCTION

Shape control is a type of manipulation problem which is
unique to deformable objects, where the goal is not only to
change the pose of an object, but also its shape. The classical
approach to this problem is referred to as shape servoing
[1]–[4]. Despite significant progress, classical methods suffer
from several limitations, including computational complexity
and modeling inaccuracy due to difficulties in identifying
the mechanical parameters of the object and its interaction
with the environment. Such methods mostly rely on an
instantaneous error and local models, therefore objects with
complex material properties remain to be explored, since
their manipulation exhibits more long-term effects.

Recent progress in deformable object manipulation has
been fueled by advances in Deep Learning (DL) research
[5]–[10]. DL methods have the advantage of indirectly en-
coding the dynamics of the manipulation task, without requir-
ing extensive engineering work in order to model the object-
environment interaction. This is appealing due to the large
variety of deformation behaviors across different classes
of deformable objects [11]. Reinforcement Learning (RL)
in particular, allows a robot to learn from experience and
optimize a policy towards long-term objectives. However, a
key obstacle to applying RL in real-world applications is the
need to collect online data on a robotic setup, which is time
consuming and potentially unsafe. An alternative is to first
collect real data and then use it to train offline RL algorithms.
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Fig. 1: Dual-arm ABB YuMi robot manipulates a rope on a table. A fixed
Intel RealSense camera provides a top-view of the workspace. The field of
view of the camera is shown in the top right corner, with the overlay of the
current shape tracking in green and the desired shape in red.

In this work we tackle a Deformable Linear Object (DLO)
shape control problem with surface interactions, using offline
RL. The manipulated DLO is a rope, which due to its low
bending stiffness and its rough texture, leads to complex
dynamics when in contact with a surface. We investigate
the efficacy of the TD3+BC offline RL algorithm [12] to
learn a control policy, and compare it with a well-established
shape servoing method proposed by Berenson et al. [1]. We
further propose a simple data augmentation approach which
improves the baseline results and enables learning of more
complex manipulation techniques, which the shape servoing
method is unable to perform.

II. PROBLEM STATEMENT

Prior work has mainly approached the problem of rope
manipulation as a sequence of pick and place motions along
the rope on a smooth surface, to achieve a desired shape
[13]–[15]. In contrast, we propose to solve the task as a bi-
manual planar control problem. More specifically, we want
to control 6 Degrees of Freedom (DOFs), where 4 DOFs
relate to the translation on an xy-plane, while the other 2
DOFs relate to the orientation of the grippers about the z-
axis. This setting precludes the need to re-grasp but brings
new challenges:

i) the middle part of the rope is not directly affected by
the movement of the grippers, due to low stiffness.

ii) contact between the rope and the workspace affects its
shape, due to friction.



Fig. 2: Overlay of three possible DLO shapes with identical gripper poses.
One can intuitively picture that for the top and bottom shapes, an additional
top-down translation motion was necessary, while for the middle shape a
counterclockwise rotation of the grippers must have occurred.

A key property is that multiple DLO shapes can be
achieved with the grippers in the same pose, depending on
the preceding motion, as shown in Fig. 2.

III. METHODS

In order to tackle the proposed problem, we make use of
a deformable object tracking method described in Section
III-A. The tracked points are then used as input to both the
Berenson [1] method for shape servoing and the Artificial
Neural Network (ANN) policy. Section III-B, introduces
the RL formulation of the problem and the proposed data
collection and augmentation procedures.

A. DLO Tracking
To track the rope, we employ the algorithm developed by

Shetab-Bushehri et al. [4], using a depth camera. The algo-
rithm is initialized by forming a lattice around a reference
point cloud of the DLO in its rest shape and then binding
the two together by geometrical constraints. During tracking,
correspondences between the reference point cloud and the
point cloud captured by the depth camera are found in
each frame. These correspondences along with a deformation
model are then applied as constraints to the lattice. We use
the As-Rigid-As-Possible (ARAP) model as the deformation
model. As a result, the lattice’s shape is updated and thus
the DLO’s reference point cloud becomes aligned with the
captured point cloud, while keeping its local rigidity.

In practice, the reference point cloud of the DLO is
obtained by creating a 3D model of a semi-cylinder with
the dimensions of the (visible) rope. We then form a lattice
with 18×3×3 vertices around this reference point cloud,
with the first dimension along the length of the rope. In
order to separate the captured point cloud of the DLO
from the background, we first employ a simple segmentation
method on the RGB image, via a color filter. Then the depth
information is aligned to the segmented image, and the points
outside the DLO are disregarded. Finally, a subset of the
vertices closest to each gripper are set as controlled points,
meaning that their 3D coordinates are updated based on the
grippers’ poses in each frame. This helps improve the quality
of the tracking, since the gripper’s poses are known, and just
need to be transformed into the camera frame.

B. Reinforcement Learning

The RL problem is formulated as a Markov Decision
Process (MDP). We frame the task described in Section II as
an episodic MDP, defined as a tuple (S,A, p, r, γ), where γ
is the discount factor and S and A are continuous state and
action spaces, respectively. The probability density function
p(st+1|st, at) represents the probability of transitioning to
state st+1, given the current state st and action at, with
st, st+1 ∈ S and at ∈ A. The dynamics of the interaction
between the robot and the DLO p(st+1|st, at) are unknown.
Instead, real data is collected with the experimental setup
shown in Fig. 1, which is used to learn a deterministic policy
π(s) = a, based on a reward function r : S → R. The return
is defined as the sum of discounted future rewards: Gt =∑T
k=t γ

k−tr(sk), where γ is a discount factor and, t and T
are the current and terminal state’s indices, respectively. RL
algorithms aim to maximize the expected return conditioned
on state-action pairs, i.e. the action-value Q(s, a).

In offline RL, the goal is to learn a policy based solely on a
fixed dataset, D. This is advantageous in robotics, however it
also adds new challenges, given that agents tend to estimate
the value of unseen state-action pairs incorrectly. Fujimoto
et al. [12] propose the TD3+BC algorithm to mitigate this
problem, which works by modifying the policy update step
of the TD3 algorithm [16] with a Behavior Cloning (BC)
regularization term (in blue): π = arg maxπ E(s,a)∼D

[
λ

Q(s, π(s))− (π(s)− a)2
]
, where λ = 1

M

∑
(si,ai)

α
|Q(si,ai)|

is computed over batches of M state-action pairs and α
controls the strength of the regularization.

RL Formulation: The shape of the DLO is represented
as the mean xy coordinates of each 3×3 lattice cross-
section, qqqi ∈ R18×2, where i ∈ {c, d} indicates the current
and desired shapes. The position and orientation of the
grippers is denoted by pppij ∈ Wj ⊂ R2, oooij ∈ [−π4 ,

π
4 ], where

Wj is a safe1 workspace, j ∈ {l, r} indicates the left/right
gripper and, i ∈ {c, d} the current and desired poses.

The MDP state is then defined as a 1D vector:

s = [q̄qqd, q̄qqc, pppcl , ppp
c
r, ooo

c
l , ooo

c
r] ∈ R78 (1)

where, the bar over the DLO shapes indicates flattened
vectors, i.e. q̄qqi ∈ R36.

The MDP action space A, is defined as the gripper poses,
i.e. a = [pppdl , ppp

d
r , ooo

d
l , ooo

d
r ] ∈ R6. A simple point-to-point

motion is then generated with a timing law dependent on the
distance between the current and desired gripper positions.

Finally, the reward function we intend to maximize is
defined based on the root mean squared error (RMSE):

r(s) = −
√

1

N

∑N
k=1

(
qqqdk − qqqck

)2
(2)

where N = 18 is the number of lattice cross-sections. The
reward was chosen to be comparable with shape-servoing
approaches which attempt to minimize the RMSE.

1Each gripper moves inside its own mutually exclusive area to prevent
collisions and DLO entanglements. Constraints are also added to keep the
DLO from being overstretched and inside the field of view of the camera.
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Fig. 3: (a) Boxplots with results for the augmentation experiment (left) and the impact of BC regularization (right), determined by the α parameter. Note
that the 8x entry on the left is the same as the 2.5 entry on the right. The black dots indicate the mean across the 10 test shapes. (b) Comparison between
final shapes and desired shape. Note how the offline RL policy succeeded in inverting the curvature, while the shape-servoing remained at a local minimum.

Data Collection: Since offline RL lacks the possibility
of exploration, we must ensure adequate coverage of the
state-action space to make learning feasible [17]. To that
end, we developed a data collection procedure which deforms
the rope into varied shapes. It works by randomly sampling
positions from the safe workspace, Wj , and orientations
from a range [−π4 ,

π
4 ] rad. For each iteration, there is a 0.3

probability of sampling a new gripper pose for either the left,
right or both grippers. With the remaining 0.1 probability,
a predetermined semi-random motion sequence is executed
which leads to inversion of the DLO’s curvature. A point-
to-point motion of the grippers is then used to generate an
episode, where intermediate DLO shapes and gripper poses
are saved as transitions and the final shape is used as qqqd.

Data Augmentation: We propose a simple data augmen-
tation procedure that improves the performance of the offline
RL method, similar to the concept of Hindsight Experience
Replay (HER), which learns from failed experience [18].
Thanks to our goal-conditioned policy (i.e. state includes
the goal), it is possible to artificially generate new episodes
by setting intermediate DLO shapes within the dataset, as
desired shapes and recomputing the reward accordingly. This
helps reduce the volume of experimental data needed.

IV. EXPERIMENTS

In this section, we describe the experimental setup and
present results validating our approach for data augmenta-
tion. We further explore the impact of the BC regularization
term, of the TD3+BC algorithm.

Experimental setup: A small dataset of 1010 episodes
was created, with the last 10 being used for testing alone.
Offline RL policies were then trained using the TD3+BC
algorithm with 1× 106 environment steps. Note that earlier
policies may be better, but finding a criteria for early stopping
in offline RL is an open research question, since there is no
clear measure for over-fitting [19].

To evaluate each policy, the current state is given as input
to the ANN and its output is used to update the grippers’
desired poses, at 2 Hz. A Cartesian controller is constantly
driving the grippers to the current desired poses. A sequence
of 10 test shapes determines the value of qqqd, for a total of 40 s
(without a reset). This time limit was chosen to help speed up
the testing, while still allowing enough time for the policies

to converge to a final shape. Note that the same methodology
was used to test the shape servoing baseline [1], and there
was a non-exhaustive attempt to tune its parameters.

Augmentation: To evaluate the benefit of the augmen-
tation procedure, four levels of augmentation were tested,
namely {1x, 2x, 4x, 6x, 8x} where 1x refers to no augmenta-
tion, 2x indicates that the amount of data was doubled, etc.
The regularization parameter was fixed to α = 2.5, as in
the original paper. From Fig. 3a (left), it is clear that the
augmentation indeed helps achieve a lower average RMSE.
This is likely due to the increase of desired shapes found in
the augmented dataset. The positive effect seems to plateau
after 4x augmentation.

BC Regularization: Other offline RL algorithms were
initially explored before choosing TD3+BC, but seemed
unable to tackle this problem. TD3+BC outperformed them
all, including plain BC. In order to investigate the impact
of the α regularization term, we used the 8x augmentation
dataset and varied the value of α. The results, shown in Fig
3a (right), indicate that larger values of α (i.e. decreasing
impact of BC) lead to better results.

The best mean RMSE across tests was achieved with the
8x augmentation and α = 3.0, for an average RMSE =
0.0219±0.0086 m, outperforming the baseline which in turn
had an average RMSE = 0.0393 ± 0.0343 m. This error
difference is mostly due to the successful inversion of the
DLO curvature for the initial shapes, shown in Fig. 3b.

V. CONCLUDING REMARKS

We have presented preliminary results on the effectiveness
of offline RL for a shape control problem exhibiting complex
dynamics. We proposed data collection and augmentation
procedures which enable learning directly from real data.
We validated our procedures on a real-world experiment
and compared it with a baseline shape servoing method.
We also investigated the impact of BC regularization on the
TD3+BC algorithm, and concluded that by decreasing its
relative weight, better results can be achieved.

A particularly important result, was the ability of the
offline RL method to learn long-term effects, demonstrated
by the successful inversion of the DLOs curvature, instead
of settling at a local minimum as the baseline. While these
results are encouraging, more work needs to be done.
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