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Abstract— As the end-effector pose is an external property
of a parallel robot, it is natural to use exteroceptive sensors
to measure it in order to suppress inaccuracies coming from
modelling errors. Cameras offer this possibility. So, it is possible
to obtain higher accuracy than in the case of classic control
schemes (based on geometrical model).

In some cases, it is impossible to directly observe the end-
effector, but the leg directions can instead be used. In this
case, however, unusual results were recorded, namely: (i) the
possibility of controlling the robot by observing a number of
legs less than the total number of legs, and that (ii) in some
cases, the robot does not converge to the desired end-effector
pose, even if the observed leg directions did.

These results can be explained through the use of the hidden
robot concept, which is a tangible visualisation of the mapping
between the observed leg direction space (internal property)
and Cartesian space (external property). This hidden robot has
different assembly modes and singular configurations from the
real robot, and it is a powerful tool to simplify the analysis of
the aforementioned mapping.

In this paper, the concept of hidden robot model is gener-
alised for any type of parallel robot controlled through visual
servoing based on observation of the leg directions.

Validation has been accomplished through experiments on a
Quattro robot with 4 dof.

I. INTRODUCTION

Compared to serial robots, parallel kinematic manipula-
tors [1] are stiffer and can reach higher speeds and accel-
erations [2]. However, their control is troublesome because
of the complex mechanical structure, highly coupled joint
motions and many other factors (e.g. clearances, assembly
errors, etc.) which degrade stability and accuracy.

Many research papers focus on the control of parallel
mechanisms (see [3] for a long list of references). It may
be possible to bypass the complex kinematic structure of the
robot and to apply a form of control which uses an external
sensor to estimate the pose of the end-effector, reducing the
stability and accuracy degradation mentioned earlier.
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Centrale de Nantes, Nantes, France
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A proven approach for estimating the end-effector pose
is through the use of vision. The most common approach
consists of the direct observation of the end-effector pose [4],
[5], [6]. In some cases, however, it may prove difficult or
unwise to observe the end-effector of the robot, e.g. in the
case of a machine-tool. A substitute target for the observation
must then be chosen and an effective candidate for this
are the legs of the robot, which are usually designed with
slim and rectilinear rods [3]. When moving the object of
observation from the end-effector to the robot legs, the result
of the observation becomes a direct measure of an internal
property, i.e. the kinematic configuration of the robot. In
addition, as the information is acquired through an external
sensor, this technique allows to estimate indirectly the pose
of the end-effector from it (like it is done in [7]) which is
an external property.

An application of this technique was performed in [8]
where vision was used to derive a visual servoing scheme
based on the observation of a Gough-Stewart (GS) parallel
robot [9]. In that method, the leg directions were chosen
as visual primitives and control was derived based on their
reconstruction from the image. The approach was applied to
several types of robots, such as the Adept Quattro and other
robots of the same family [10], [11].

However, two unexpected results arose from the applica-
tion of this technique:

• It was possible to control the robot by observing a
number of legs fewer than the total number of legs.
This is surprising because in the case of standard control
schemes (actuator-based control), each actuated leg has
to be controlled in order to fully servo the robot (six legs
for the GS platform using actuators, instead of three legs
using vision; four legs for the Quattro using actuators,
instead of two legs using vision).

• In some cases, the robot did not converge to the desired
pose, even if all observed leg directions did. This was
surprising, since the whole idea of using an external
sensor is to get the exact position of the end-effector.

Not only were these two points inexplicable, but other
questions arose too, which were never answered. Such as:

• Are we sure there are no local minima (for which the
error in the observation space is non zero while the robot
platform cannot move [12]) in the Cartesian space?

• Are we sure that there is no singularity in the mapping
between the leg direction space and the Cartesian space?

Due to the unusual nature of this visual servoing technique,
all these points were left unanswered. It was clear that this



behaviour was due to the mapping between Cartesian space
and the leg direction observation space, but at this time the
nature of the mapping was not understood and there were no
tools available to analyse correlation between the intrinsic
and extrinsic properties of the controller.

The answer came only recently, when two of the authors of
the present paper proposed the existence of a virtual robot
model “hidden” within the controller. This robot presents
singular configurations and assembly modes different from
the controlled robot, and it is this hidden robot whose
intrinsic and extrinsic properties are being used through the
observation of the real robot’s leg directions.

This proposition was demonstrated in [13] where the
visual servoing of the leg directions of the GS platform was
proven to be equivalent to controlling the hidden 3–UPS1

robot. A similar property has been shown for the control
of the Adept Quattro with only 3 translational degrees of
freedom (dof – a redundant version of the Quattro with
a rigid platform) for which another hidden robot model,
completely different from the one of the GS platform, has
been found [15].

In both cases, the hidden virtual robot is proven to be
a tangible visualisation of the mapping between the obser-
vation space and the real robot Cartesian space, correlating
the external and internal properties observed through vision.
Considering this hidden robot model, a minimal represen-
tation for the leg observation-based control of the studied
robots can be found, which makes it possible to answer the
previous questions.

Thus, the concept of hidden robot model, is the tool
able to analyse the intrinsic properties of some controllers
developed by the visual servoing community, without which
the behaviour of the controller cannot fully be explained.
Moreover, this concept shows that in some visual servoing
approaches, using only the extrinsic properties and stacking
several interaction matrices to derive a control scheme with-
out doing a deep analysis of the intrinsic properties of the
controller is clearly not enough. Further investigations are
required.

Therefore, in this paper, the generalization of the concept
of hidden robot model is presented and a general way to
find the hidden robots corresponding to any kind of robot
architecture is explained. It will be shown that the concept
of hidden robot model is a powerful tool which correlates the
extrinsic and intrinsic properties observed through the visual
servoing of robots using leg direction observation and gives
useful insights about this kind of visual servoing technique.
Not only does the concept of hidden robot model answer
the unexplained results presented earlier, but also through
its use the singularity problem of the mapping between the
space of the observed robot links and the Cartesian space
can be addressed. Moreover, it is possible to give and certify
information, in a simplified way, about the controllability of
the observed robots using the proposed controller.

1In the following of the paper, R, P, U, S, Π will stand for passive
revolute, prismatic, universal, spherical and planar parallelogram joint [14],
respectively. If the letter is underlined, the joint is considered active.
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Fig. 1. Example of leg, robot, and platform for the Adept Quattro

II. RECALLS ON VISUAL SERVOING OF PARALLEL

ROBOTS USING LEG OBSERVATIONS

The proposed control approach was to servo the leg
directions cui [8] (Fig. 1(a)). Some brief recalls on this type
of controller are done below.

A. Interaction matrix

Visual servoing is based on the so-called interaction matrix
LT [16] which relates the instantaneous relative motion Tc =
cτc − cτs between the camera and the scene, to the time
derivative of the vector s of all the visual primitives that are
used through:

ṡ = LT
(s)Tc (1)

where cτc and cτs are respectively the kinematic screw of the
camera and the scene, both expressed in Rc, i.e. the camera
frame.

In the case where we want to directly control the leg
directions cui, and if the camera is fixed, (1) becomes:

cu̇i = MT
i
cτc (2)

where MT
i is the interaction matrix for the leg i.

B. Control

For the visual servoing of a robot, one achieves ex-
ponential decay of an error e(s, sd) between the current
primitive vector s and the desired one sd using a proportional
linearizing and decoupling control scheme of the form:

Tc = λL̂T+
(s) e(s, sd) (3)

where Tc is used as a pseudo-control variable and the
superscript “+” corresponds to the matrix pseudo-inverse.

The visual primitives being unit vectors, it is theoretically
more elegant to use the geodesic error rather than the
standard vector difference. Consequently, the error grounding
the proposed control law will be:

ei =
cui ×

cudi (4)

where cudi is the desired value of cui.
It can be proven that, for spatial parallel robots, matrices

Mi are in general of rank 2 [8] (for planar parallel robots,
they are of rank 1). As a result, for spatial robots with more
than 2 dof, the observation of several independent legs is
necessary to control the end-effector pose. An interaction



matrix MT can then obtained by stacking k matrices MT
i

of k legs.
Finally, a control is chosen such that e, the vector stacking

the errors ei associated to of k legs (k = 3...6), decreases
exponentially, i.e. such that

ė = −λe (5)

Then, introducing LT
i = − [cudi]× MT

i , where [cudi]× is
the cross product matrix associated with the vector cudi, the
combination of (4), (2) and (5) gives

cτc = −λLT+e (6)

where LT can be obtained by stacking the matrices LT
i of

k legs. The conditions for the rank deficiency of matrix LT ,
as well as the conditions that lead to local minima [12] of
the Eq. (6) are discussed in Section III.

This expression can be transformed into the control joint
velocities:

q̇ = −λcJinvLT+e (7)

where cJinv is the inverse Jacobian matrix of the robot
relating the end-effector twist to the actuator velocities, i.e.
cJinvcτc = q̇.

In the next Section, it is shown that such type of controller
involve the use of hidden robot models that can be studied
for analysing the controllability of parallel robots using the
proposed visual servoing approach.

III. THE CONCEPT OF HIDDEN ROBOT MODEL

The concept of hidden robot model has been first intro-
duced in [13] for the visual servoing of the GS platform. In
this paper, it has been demonstrated that the leg direction
based visual servoing of such robots intrinsically involves
the appearance of a hidden robot model, which has assembly
modes and singularities different from the real robot. It was
shown that the concept of hidden robot model fully explains
the possible nonconvergence of the observed robot to the
desired final pose and that it considerably simplifies the
singularity analysis of the mapping involved in the controller.

The concept of hidden robot model comes from the
following observation: in the classical control approach,
the encoders measure the motion of the actuator; in the
previously described control approach (Section II), the leg
directions or leg edges are observed. So, in a reciprocal
manner, one could wonder to what kind of virtual actuators
such observations correspond. The main objective of this
Section is to give a general answer to this question.

A. How to define the legs of the hidden robots

Let us consider a general leg for a parallel robot in which
the direction ui of a segment is observed (Fig. 2(a) – in
this figure, the last segment is considered observed, but the
following explanations can be generalized to any segment
located in the leg chain).

In the general case, the unit vector ui can obviously be
parameterized by two independent coordinates, that can be
two angles, for example the angles α and β of Fig. 2(c)
defined such that cosα = x ·v = y ·w (where v and w are
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defined such that z ·v = z ·w = 0) and cosβ = u · x. Thus
α is the angle of the first rotation of the link direction ui

around z and β is the angle of the second rotation around v.
It is well known that a U joint is able to orientate a link

aroud two orthogonal axes of rotation, such as z and v.
Thus U joints can be the virtual actuators with generalized
coordinates α and β we are looking for. Of course, other
solutions can exist, but U joints are the simplest ones.

If a U joint is the virtual actuator that makes the vector
ui move, it is obvious that:

• if the value of ui is fixed, the U joint coordinates α and
β must be constant, i.e. the actuator must be blocked,

• if the value of ui is changing, the U joint coordinates
α and β must also vary.

As a result, to ensure the aforementioned properties for α
and β if ui is expressed in the base or camera frame (but
the problem is identical since the camera is considered fixed
on the ground), vectors x, y and z of Fig. 2(c) must be the
vectors defining the base or camera frame. Thus, in terms of
properties for the virtual actuator, this implies that the first
U joint axis must be constant w.r.t. the base frame, i.e. the
U joint must be attached to a link performing a translation
w.r.t. the base frame2.

However, in most of the cases, the real leg architecture
is not composed of U joints attached on links performing
a translation w.r.t. the base frame. Thus, the architecture
of the hidden robot leg must be modified w.r.t. the real
leg such as depicted in Fig. 2(b). The U joint must be
mounted on a passive kinematic chain composed of at most 3
orthogonal passive P joints that ensures that the link on which
is it attached performs a translation w.r.t. the base frame.
This passive chain is also linked to the segments before the
observed links so that they do not change their kinematic
properties in terms of motion. Note that:

• it is necessary to fix the PPP chain on the preceeding leg
links because the information given by the vectors ui is
not enough for rebuilding the full platform position and
orientation: it is also necessary to get information on
the location of the anchor point An−1 of the observed

2In the case where the camera is not mounted on the frame but on a
moving link, the virtual U joint must be attached on a link performing a
translation w.r.t. the considered moving link.
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segment [17]. This information is kept through the use
of the PPP chain fixed on the first segments;

• 3 P joints are only necessary if and only if the point
An−1 describes a motion in the 3D space; if not, the
number of P joints can be decreased: for example, in
the case of the GS platform presented in [13], the U
joint of the leg to control was located on the base, i.e.
there was no need to add passive P joints to keep the
orientation of its first axis constant;

• when the vector ui is constrained to move in a plane
such as for planar legs, the virtual actuator becomes
an R joint which must be mounted on the passive PPP
chain (for the same reasons as mentioned previously).

For example, let us have a look at the RU leg with one
actuated R joint followed by a U joint of Fig. 3(a). Using
the previous approach, its virtual equivalent leg should be an
{R–PP}–U leg (Fig. 3(b)), i.e. the U joint able to orientate
the vector ui is mounted on the top of a R–PP chain that
can garantee that:

1) the link on which the U joint is attached performs a
translation w.r.t. the base frame,

2) the point C (i.e. the centre of the U joint) evolves on
a circle of radius lAB, like the real leg.

It should be noticed that, in several cases for robots with
a lower mobility (i.e. spatial robots with a number of dof
less than 6, or planar robots with a number of dof less than
3), the last joint that links the leg to the platform should be
changed so that, if the number of observed legs is inferior
to the number of real legs, the hidden robot keeps the same
number of controlled dof.

It should also be mentioned that we have presented above
the most general methodology that is possible to propose,
but it is not the most elegant way to proceed. In many cases,
a hidden robot leg architecture can be obtained such that less
modifications w.r.t the real leg are achieved. For example, the
R–PP chain of the hidden robot leg {R–PP}–U (Fig. 3(b))
could be equivalently replaced by a planar parallelogram (Π)
joint without changing the aforementioned properties of the
U virtual actuator (Fig. 3(c)), i.e. only one additional joint
is added for obtaining the hidden robot leg (note that we
consider that a Π joint, even if composed of several pairs,
can be seen as one single joint, as in [14]).

B. How to use the hidden robot models for analysing the
controllability of the servoed robots

The aim of this Section is to show how to use the
hidden robots for answering points 1 to 4 enumerated in the

introduction of the paper.

Point 1: the hidden robot model can be used to explain
why the observed robot which is composed of n legs can
be controlled using the observation of only m leg directions
(m < n) arbitrarily chosen among its n legs, and can also
help to choose the best set of legs to observe with respect to
some given performance indices.

For answering this point, let us consider a general parallel
robot composed of 6 legs (one actuator per leg) and having
six dof. Using the approach proposed in Section III-A, each
observed leg will lead to a modified virtual leg with at least
one actuated U joint that has two degrees of actuation. For
controlling 6 dof, only 6 degrees of actuations are necessary,
i.e. three actuated U are enough. Thus, in a general case,
only three legs have to be observed to fully control the
platform dof.

Point 2: the hidden robot model can be used to prove that
there does not always exist a full diffeomorphism between the
Cartesian space and the leg direction space, but can also
bring solutions for avoiding to converge to a non desired
pose.

Here, the answer comes directly from the fact that the
real controlled robot may have a hidden robot model with
different geometric and kinematics properties. This means
that the hidden robot may have assembly modes and singular
configurations different from those of the real robot. If the
initial and final robot configurations are not included in the
same aspect (i.e. a workspace area that is singularity-free
and bounded by singularities [2]), the robot won’t be able to
converge to the desired pose, but to a pose that corresponds
to another assembly mode that has the same leg directions
as the desired final pose.

Point 3: the hidden robot model simplifies the singularity
analysis of the mapping between the leg direction space
and the Cartesian space by reducing the problem to the
singularity analysis of a new robot.

The interaction matrix MT involved in the controller gives
the value of cu̇ as a function of cτc. Thus, MT is the inverse
Jacobian matrix of the hidden robot (and, consequently,
MT+ is the hidden robot Jacobian matrix). Except in the case
of decoupled robots [18], [19], [20], the Jacobian matrices
of parallel robots are not free of singularities.

Thus,
• finding the condition for the rank-deficiency of MT is

equivalent to finding the Type 2 (or parallel) singulari-
ties of the hidden robot [21],

• finding the condition for the rank-deficiency of MT+ is
equivalent to finding the Type 1 (or serial) singularities
of the hidden robot [21].

Point 4: the hidden robot model can be used to certify that
the robot will not converge to local minima.

The robot could converge to local minima if the matrix
LT+ of (6) is rank deficient. A necessary and sufficient
condition for the rank deficiency of this matrix is that
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the MT+ is rank deficient, i.e. the hidden robot model
encounters a Type 1 singularity.

For illustrating this Section, let us present the fkp and
singularity analysis of the hidden robot model of the Quattro
with 4 dof (that can perform Schoenflies motions), when
controlled using leg direction observation. It must be men-
tionned that, in [15], the Quattro with rigid platform, i.e. with
3 translation dof, was studied. The kinematics of the hidden
robot for the version with 4 dof is completely different and
is the object of this Section.

The Quattro is made of 4 R–{2–US} legs (see Fig. 1),
thus, following the previous approach, its equivalent hidden
robot will be made of Π–{2–US} or Π–{2–UU} legs. As
such hidden robot legs have 2 degrees of actuation (the U
joint is fully actuated), only two legs have to be observed for
fully controlling the Quattro using leg direction observation.
However in this case, if the hidden robot has a 2–Π–{2–US}
architecture, the platform will have two uncontrolled dof.
This phenomenon disappears if Π–{2–UU} legs are used
in the hidden robot model (Fig. 4 – in this picture, the
articulated platform is simplified for a clearer drawing, but
has indeed the kinematic architecture presented in Fig. 1(c)).

Forward kinematics and assembly modes. Without loss of
generality, let us consider that we analyse the 2–Π–{2–UU}
robot depicted at Fig. 4(a). Looking at the vertex space of
each leg when the active U joints are fixed, the points Ci

and Di are carrying out a circle Ci of radius lAiBi
centred

in Si (Fig. 4(c)).
The Quattro with 4 dof, and consequently its hidden robot

model, has a particularity: its platform is passively articulated
(Fig. 1(c)) so that its orientation with respect to the horizontal
plan xOy stays constant, while it can have one degree of
rotation around the z axis, i.e. point D2 can describe a circle
Cl located in the horizontal plane, centred in D1 and with a
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radius lD1D2
. For solving the forward kinematics, it is thus

necessary to virtually cut the platform at point D2 and to
compute the coupler surface of point D2 when it belongs
to leg 1. This coupler surface is the surface generated by
Cl when it performs a circular translation along C1. Such a
surface is depicted in Fig. 5(a) and is called a Bohemian
Dome [22].

A Bohemian Dome is a quartic surface, i.e. an algebraic
surface of degree 4. When it intersects the vertical plane
Pl containing the circle C2 (i.e. vertex space of the second
leg), the obtained curve is a quartic curve (denoted at S1

– Fig.5(a)). And using the Bézout theorem [23], it can be
proven that, when the circle corresponding to the vertex
space of leg 2 intersects this quartic curve, there can exist
at most 8 intersection points, i.e. 8 assembly modes. Some
examples of assembly modes for the 2–Π–{2–UU} robot
are depicted in Figs. 5(b) and 5(c).

Singular configurations. For the 2–Π–{2–UU} robot, Type
2 singularities appear when the planes Pi and Pj (whose
normal vectors are equal to v⊥

i and v⊥

j , resp.) are parallel. In
such cases, the circle C2 is tangent to the Bohemian Dome at
their intersection point and the robot gains one uncontrollable
dof along this tangent (Fig. 4(d)). We must note here that
this can happen even when all four legs are being observed,
so in some situations, stacking the interaction matrices is not
a solution.



C. Selection of the Controlled Legs

This Section has shown the importance of studying the
intrinsic properties of the controller that are directly related
to the choice of the stacked interaction matrices required
for computing the control law. Depending on the chosen
interaction matrices, i.e. on the choice of the observed legs,
the geometry of the hidden robot models will vary, as well as
its singularities and assembly modes. As singularities divide
the workspace into distinct aspects [2], it is necessary to
study the motion feasibility by selecting a set of legs that
can allow the robot displacement. Moreover, even if the
motion is feasible, if the robot goes close to a singularity,
the positioning error can considerably grow.

Therefore, it is necessary to find the best set of legs
to observe in order to get the best performances of the
robot w.r.t. a desired task. For the sake of compactness,
the methodology for this will not be presented here, but the
reader is referred to [15] for more information on this.

In the next Section, all the presented theoretical results are
validated through experiments on the Adept Quattro [24].

IV. CASE STUDY

A. Description of the benchmark

In this Section, experiments are performed on the Adept
Quattro presented in the previous Section. The benchmark is
composed of (Fig. 6):

• an Adept Quattro robot bought by the Institut Pascal of
Clermont-Ferrand (France),

• a camera AVT Marlin F131B firewire IEEE1394 (lens:
3.6mm 1:1.6 1/2 inch for CCD camera), which is
mounted at the centre of the robot base so that all the
legs can be observed without any problems of occlusion
and whose intrinsic and extrinsic parameters have been
calibrated,

• a lighting system that provides an homogeneous lighting
to the scene,

• a computer that extracts the data coming from the
camera, computes the value of the leg directions u,
then calculates the robot actuator velocity q̇ using the
controller of Section II-B and send the information to
the robot controller. Note that, in experiments, the value
of λ in the controller is fixed to 0.2.

It must be mentioned we have deliberately decided to
use the minimal camera resolution and not to correct the
distortion of the captured image. The measurement noise on
the leg direction is thus of about 0.1 rad, but:

• such a high noise is interesting to show the controller
robustness to leg direction prediction errors,

• the noise is so high that, for analysing the robot accu-
racy and measuring the distance between the real and
nominal robot configurations, we can directly record
and use the value of the platform pose predicted by the
Adept Quattro controller instead of using one external
measurement device (such as a laser tracker).
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B. Experimental validations

Testing the convergence of the robot to the desired pose
In the first set of experiments, the initial platform pose is
equal to {x = 0m, y = 0m, z = −0.75m,φ = 0rad} and
the final desired platform pose is set to {x = −0.2m, y =
0m, z = −0.56m,φ = 0rad}. To go from the initial point to
the final one, two sets of observed leg directions are tested:
{1, 4} and {2, 3}. For those two sets of legs, solving the
fkp of the hidden robot model of the Quattro presented in
Section III-B at the desired final configuration of the robot,
gives four possible solutions each. For legs {1, 4}, these are:

• {x = −0.2m, y = 0m, z = −0.56m,φ = 0rad}
• {x = −0.2m, y = 0m, z = −0.909m,φ = 0rad}
• {x = −0.138m, y = 0.062m, z = −1.019m,φ =

0rad}
• {x = −0.138m, y = 0.062m, z = −0.45m,φ = 0rad}

The solutions for legs {2, 3} are:

• {x = −0.2m, y = 0m, z = −0.56m,φ = 0rad}
• {x = −0.2m, y = 0m, z = −0.296m,φ = 0rad}
• {x = −0.262m, y = 0.062m, z = −0.694m,φ =

0rad}
• {x = −0.262m, y = 0.062m, z = −0.161m,φ =

0rad}

The robot is asked to move from the initial configuration
to the final one. Due to the presence of high measurement
noise, the robot can of course not converge to the final desired
pose.

The results are illustrated in Figs. 7 and 8. It can be
seen that using legs {1, 4}, not all legs tend to go to
zero, and indeed the final attained pose will be Pf 14 =
{x = −0.11, y = 0.01, z = −0.86, φ = −2.15rad}.
Simulations were run by adding the measurement noise to
the leg directions in the kinematic model [15] to determine
the uncertainty areas due to the aforementioned measurement
error corresponding to the final attained position. The result-
ing tolerable errors in position and orientation were 0.11m
and 2.00rad, respectively. The fkp solution around Pf 14 is
{x = −0.2m, y = 0m, z = −0.909m,φ = 0rad}, so the
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Fig. 8. Convergence of the robot when legs 2 and 3 are observed (desired
pose: {x = −0.2, y = 0, z = −0.56, φ = 0}).

robot does not converge to the desired pose, but to the second
fkp solution of its hidden robot model.

When observing legs {2, 3}, all legs correctly tend to go
to zero, and the final attained pose will be Pf 23 = {x =
−0.12, y = 0.05, z = −0.55, φ = −0.90rad}. After the
simulations, we obtain the associated uncertainty area of
this final pose, characterised by tolerable errors of 0.23m
in position and 1.23rad in orientation. Around Pf 23 can be
found the desired final position, i.e. the first fkp solution,
{x = −0.2m, y = 0m, z = −0.56m,φ = 0rad}.

A second experiment is performed in which all legs
are observed. The initial platform pose is equal to {x =
0.05m, y = 0.05m, z = −0.8m,φ = 0rad} and the final
desired platform pose is set to {x = 0.03m, y = 0.03m, z =
−0.59m,φ = 0rad}. Solving the fkp of the hidden robot
model of the Quattro when all legs are observed at the desired
final configuration of the robot, it can be proven that there
still exist two assembly modes which are:

• {x = 0.03m, y = 0.03m, z = −0.59m,φ = 0rad}
• {x = 0.03m, y = 0.03m, z = −0.65m,φ = 0rad}

Performing the motion, the robot arrived in the final pose
Pf 1234 = {x = 0.03m, y = 0.03m, z = −0.72m,φ =
0.05rad}.Even though all legs tend to go to zero, the robot
does not converge to the desired pose, but to the second
fkp solution. Indeed, when we perform the simulations to
determine the uncertainty area, we obtain tolerable errors
in position of 0.08m and orientation of 1.54rad, describing
a volume which contains the aforementioned fkp solution,
{x = 0.03m, y = 0.03m, z = −0.65m,φ = 0rad}.
The final platform pose presents an error of 0.07m in
position error and 0.05rad in orientation w.r.t. this second
fkp solution. These results are illustrated in Fig. 9.
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Fig. 9. Convergence of the robot when all legs are observed (desired pose:
{x = 0.03, y = 0.03, z = −0.59, φ = 0}).

It should be mentioned that the plotted values of the error
norms are computed using the values of the leg directions
given by the Quattro controller.

All these experimental results confirm the presence of
the virtual robot hidden within the controller that must be
studied in order to avoid the convergence problems due to
inadequate stacking of interaction matrices.

Testing the importance of the selection of the observed
legs on the robot accuracy
To show the importance of the leg selection on the robot
accuracy, it is decided to control the robot displacement using
different sets of legs. Each experiment is run five times and
we present here the maximal values obtained on the position
and orientation error.

In the first set of experiments, two different sets of legs
are observed: (i) legs {2, 3} and (ii) legs {2, 4}, going from
the initial pose {x = 0.02m, y = 0.1m, z = −0.7m,φ =
0rad} to the final pose {x = −0.2m, y = 0.01m, z =
−0.7m,φ = 0rad}. When legs {2, 3} are observed, the
final pose accuracy shows a position error of 0.11m and
an orientation error of 0.06rad, while in the case of legs
{2, 4}, the errors are 0.23m and 0.68rad, respectively. Thus
we obtain better accuracy when observing the first set of
legs.

In the second set of experiments, the initial platform pose
is equal to {x = 0.05m, y = 0.05m, z = −0.8m,φ = 0rad}
and the final desired platform pose is set to {x = 0.03m, y =
0.03m, z = −0.65m,φ = 0rad}. It is decided to control the
robot displacement using three different sets of legs: (i) legs
{1, 4}, (i) legs {1, 3, 4} and (iii) all legs. In the first case,
the final platform pose is characterised by a 0.11m position
error and a 0.39rad orientation error. When observing three
legs, we obtain 0.09m error in position and 0.31 error in
orientation. And lastly with four legs we have a position error
of 0.07m and an orientation error of 0.05rad. These results
show that increasing the number of legs to be observed also
increases the accuracy of the platform.

All these experimental results confirm the necessity to
carefully select the set of legs to observe in order to obtain
the best accuracy possible. However, it must be recalled that,
even if observing all the legs lead to a better accuracy, this
result must not hide the fact that some convergence problems
can still appear, as shown previously.



V. CONCLUSIONS

This paper has presented the “hidden robot concept”, a
tangible visualisation of the mapping between the observa-
tion space and Cartesian space of parallel robots controlled
through the use of leg direction-based visual servoing. This
robot, which has different assembly modes and singular
configurations from the real robot, can be used as a tool
to simplify the analysis of the mapping between intrinsic
and extrinsic parameters acquired through vision. This tool
offers:

1) explanation why it is possible to fully control the real
robot by observing a number of legs which is less than
the number of total legs,

2) proof that there does not always exist a full diffeo-
morphism between the Cartesian space and the leg
direction space,

3) simplified singularity analysis of the mapping between
the leg direction space and the Cartesian space by
reducing the problem to the singularity analysis of a
the new hidden robot,

4) knowledge about the existence of local minima and
certification whether the robot will or will not converge
to these, through the applciation of tools developed for
the singularity analysis of robots.

A general approach has been presented, which allows the
definition of the hidden robot model corresponding to any
real parallel robot controlled via leg orientation-based visual
servoing. This method has been applied to the Adept Quattro,
followed by experiments which demonstrate the validity of
the theoretical developments.

Finally, in this paper, we only considered to observe the
leg direction ui, and not the leg edges in the image space,
as the leg edges are only used as a measure of ui. However,
the problem is the same, except in the fact that we must
consider the singularity of the mapping between the edges
and ui, which appears when the cylinders are at infinity [17].

Thus, the concept of hidden robot model has been proven
to be a powerful tool, which brings mathematical tools
developed by the mechanical design community to aid in
the study of the correlation between intrinsic and extrinsic
properties of some controllers developed by the visual ser-
voing community. Also, not only has this tool simplified
the analysis of the mapping between the Cartesian space
and observation space, but has also proven that using only
the extrinsic properties of the controller without doing the
analysis of the intrinsic ones is clearly not enough.
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