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Abstract— One of the key steps in high-speed control of a
parallel robot is to define an efficient dynamic model. It is
usually not easy to have such a model for parallel robots, since
many of them have complex structures. Here, we propose a
novel vector-based approach, which employs the leg orientations
of the robot observed by a calibrated camera, to obtain a
simplified inverse projective dynamic model. This vector-based
methodology is a pioneer in the sense of solving the entire hard
modeling problem through the knowledge of only a nominal set
of image features: the edges and the edge velocities of the legs
of the parallel robot. We verified our method on a simulator
of the Quattro robot with a computed torque control.

I. INTRODUCTION

Parallel robots have superior skills: they can reach high-
speeds, show high-dynamic performances and achieve good
repeatability [1]. These skills make them more attractive for
many applications in comparison with serial robots.

However, their control is troublesome because of the
complex mechanical structure, highly coupled joint motions
due to the closed-loop kinematic chains and many factors
such as clearances in passive joints, assembly errors, etc.,
which degrade stability and accuracy. Hence, to profit fully
from these parallel mechanisms, one requires an efficient
dynamic model, which should be purified from the com-
plexity of the system, to use in the well-knowncomputed
torque control(CTC) [2]. Generally, in the literature, these
models are considered to be written as a function of the joint
coordinates due to the existence of only the actuator encoders
as sensors for the measurement [3]. This makes derivation
of simple models difficult without making assumptions [4]
and overlooking some modeling errors in the mechanism.

What if we had additional sensors? The first attempt at
this solution is made in [5] by introducing extra sensors, or
so-called metrological redundancy, to simplify the kinematic
models for easier control. So, having the inspiration of
metrological redundancy, the immediate questions, which
have to be answered to turn the tables on our side in
the scenario, are “What actually should be sensed on the
mechanism?” and “How can the modeling be adapted for
the sensed data?” to have lighter models that will yield better
control.

In this work, observation of the orientations of the slim
and cylindrical shaped legs of the Quattro parallel robot is
proposed as a solution. Indeed, it seems to be a good choice,
since they play a crucial role in kinematics of a parallel robot
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[6]. Moreover, this observation will let us take advantage of
a vector-based formulation rather than a formulation based
on coordinates in dynamics as well.

In this paper, the previous work done in [7], for the
kinematic modeling of the parallel robot ( Section III ),
is pushed one step further by introducing a vector-based
dynamic modeling based on leg orientations ( Section IV ).
The introduced vector-based dynamic model: (i) has a more
compact, readable and understandable written expression, (ii)
in particular, suppresses the use of direct and inverse of
the sine and cosine functions, (iii) is easier to implement,
and (iv) has a more geometric flavour and hence lessened
calculus. The leg orientations of the robot can be sensed with
either a gyroscope, some special joint-sensors at extremities
of the legs or by vision. Here, vision is chosen, since it
is contactless, is easy to integrate and reduces the system
calibration process by allowing all the measurements to be
performed in a single reference frame. In Section V, it is
shown that vision is rich enough to furnish the required
variable sets of kinematics and dynamics for control. Finally,
in Section VI, the proposed vector-based dynamic model,
which makes use of vision directly in the internal control-
loop to compensate for the dynamics, is validated on a
simulator of the Quattro parallel robot. In order to make
the terminology clear and ease understanding of the paper,
we devote the next section to the geometry of the Quattro
parallel robot and the notation used throughout the paper.

II. GEOMETRY OF THE MECHANISM

The Quattro is composed of four identical kinematic
chains (legs), that carry the articulated travelling plate (na-
celle). Each of the4 kinematic chains is actuated from
the base by a revolving motor, located atPi , and has two
consecutive bodies (an arm and a forearm) linked with each
other atA i . Each forearm consists of two slim and cylindrical
shaped rods fitted with ball-joints ((A i1,A i2) and (Bi1,Bi2)),
forming a parallelogram (see Fig. 1). At the top, the arms are
connected to the motors, while at the bottom, the forearms
are connected to the nacelle. The latter is designed with four
parts [8]: the two lateral bars ([C1C2] and [C3C4]) and the
two central bars linking lateral ones with revolute joints (Fig.
2). The nacelle also has an amplification system to transform
the relative rotationθ into a proportional rotation (β = κθ )
in the end-effectorE. While modeling the kinematics and
dynamics, we assignC4 as the new end-effector position
instead of its actual one for simplicity’s sake and introduce
the following notations:



Fig. 1. Leg parameters.
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Fig. 2. Nacelle parameters.

• i = 1,2,3,4 denotes the legs andj = 1,2 denotes the
edges of the forearm rods.

• Vectors are denoted with boldface characters and, in
addition, unit vectors are underlined.

• zb = (O,xb,yb
,zb), ze = (C4,xe,ye

,ze),
zc = (Oc,xc,yc

,zc), zpi = (Pi ,xpi,ypi
,zpi) and

zai = (A i ,xai,yai
,zai) denote respectively the base,

end-effector, camera andi th arm and i th forearm
reference frames.

• All the parameters are expressed inzc.
• qi0 is the articulated position of thei th arm.
• In zb the axes of the arm are designed as:

bxpi =
[

cos(qi0)cos(αi) cos(qi0)sin(αi) −sin(qi0)
]T

bzpi =
[ −sin(αi) cos(αi) 0

]T

by
pi

= bzpi×b xpi

whereα i = α +(i−1)π
2 .

• cVe = [ẋ, ẏ, ż]T and ωz are, in turn, the translational
velocity and the angular velocity around the fixed axis
cze of the end-effectorC4. Thus, the Cartesian pose
velocity of the end-effector can be represented by:

cζ̇ =
[

ẋ ẏ ż ωz
]T

•
−−−−→cA i j Bi j =

−−−−→cA i1Bi1 =
−−−−→cA i2Bi2 = L cxai.

•
−−−→cPiA i = l cxpi.

•
−−−−→cA i1A i2 =

−−−−→cBi1Bi2 = H czpi.

III. VECTOR-BASED KINEMATICS

Here, some contexts necessary for the following sections
are briefly recalled. For detailed explanations the reader is
referred to [7].

A. Representation and Projection of a Leg

The rods[A i1Bi1] and [A i2Bi2] of the forearms are rep-
resented with binormalized Plücker coordinates(x,n,n) [9].
Here x , n and n denote the direction of the rod, the unit
vector orthogonal to the plane defined by the rod and the
center of projection, and the orthogonal distance of rod to
the center of projection, respectively. One advantage of this
representation is thatn , meanwhile, corresponds to the image
projection of the rod.

Assuming that the attachment pointBi1 is lying on the
revolution axis of the leg (see Fig. 3), the geometry of the
robot calls forth the following constraints:

cn j
i

T cxai = 0, cBi1
T cn j

i =−R, cxai =
cn1

i × cn2
i

‖cn1
i × cn2

i ‖
(1)

where cxai ,
cn j

i and R are the direction, the edge and the
radius of the cylindrical leg, respectively.

Fig. 3. Visual edges of a cylinder.

B. Inverse Differential Kinematic Models of The Robot

The implicit kinematic modeling through the observation
of the first legs[A i1Bi1] is noted as:

q̇i0 = cD inv
ei

cζ̇ , cẋai =
cM i

cζ̇ (2)

whose expressions are algebraic and can be found in [7].

IV. VECTOR-BASED DYNAMICS

Here, it is demonstrated, step by step, how to obtain a
simplified inverse dynamic model for the robot through the
fusion of Khalil’s [10] and Kane’s methods [11]. The reasons
for choosing these methods are their modularity and ability to
be harmonized in a vector-based notation. The compactness
of the model comes from the direct imposition of the leg
orientations, granted by vision, into the equations of motion.

A. Inverse Dynamic Model of The Robot

Khalil’s formulation [10] is followed to calculate the
inverse dynamic model of the Quattro parallel robot:

Γ = cDT
e

[
Fp +

4

∑
i=1

(
cJT

Bi

cJ inv
i

T
Hi

)]
(3)

wherecDe is the inverse of the inverse differential kinematic
model cD inv

e . The 4 d.o.f. platform dynamics (Fp ∈ ℜ4×1)
is computed via Newton-Euler formulation as in [10]. The
relation between the Cartesian velocities of the terminal point
of the i th leg and the end-effector pose is,

cJBi
=

[
I3 −εi hcxe

]
(4)



whereε1 = ε2 = 1, ε3 = ε4 = 0. cJ inv
i ∈ℜ3×3 andHi ∈ℜ3×1

are the inverse differential kinematic and inverse dynamic
models for the legi, respectively. The following two subsec-
tions are devoted to their derivations.

B. Inverse Differential Kinematic Model of a Leg

Since the legs hold theR− (S−S)2 = R−U−U structure
equality [12], each of the legs of the robot is treated as3
d.o.f. by omitting the joints that connect the leg to the moving
platform. Respectively,1 d.o.f. for the actuated revolute joint
R and2 d.o.f. for the passive universal jointU are required.
After that, the instantaneous pose of the leg is specified with
thegeneralized coordinates{qi0, qi1, qi2} (Fig. 4), whereqi0
and{qi1, qi2} designate the radian measures of the angles of
the arm and forearm orientations, respectively. To obtain the
differential kinematic model of the leg, the terminal point
position cBi1 is written as below:

cBi1 =c Pi + lcxpi +
−−−−→cA iA i1 +L cxai (5)

Fig. 4. Open tree structure (R−U−) of the leg. (zpi⊥zai)

Then, expressing the angular velocities of the kinematic
chain with respect to fixed base frame yields:

cω pi = q̇i0
czpi ,

cωai = (q̇i0 + q̇i1)
czpi + q̇i2

czai (6)

wherecω pi and cωai represent the angular velocities of the
arm and forearm. Differentiating (5) yields:

d
dt

(cBi1) = lcẋpi +L cẋai (7)

where

cẋpi = cω pi× cxpi ,
cẋai = cωai× cxai (8)

Equation (7), using (8), can be rewritten as below:

cḂi1 =
[ cvi si

czai si
cy

ai

]
︸ ︷︷ ︸

cJi




q̇i0
q̇i1
q̇i2


 (9)

where

si = L ‖czpi× cxai‖ , cvi = l cy
pi

+ si
czai (10)

andcJi ∈ℜ3×3 is the forward differential kinematic model of
the i th leg. Working on the matrixcJi , the analytic form of

the inverse differential kinematic model of the leg is derived
as follows:

cJ inv
i =

1
si




si
cvi ·cxai

0 0
−cvi ·czai
cvi ·cxai

0 1
−cvi ·cyai
cvi ·cxai

1 0




[ cxai
cy

ai
czai

]T
(11)

C. Inverse Dynamic Model of a Leg

Here, Kane’s method [11] is employed to obtain the
inverse dynamic modelHi , which will be later plugged into
(3) to complete the full inverse dynamic model. It is also the
part where the leg orientations come into the picture in the
dynamic model. In the sequel, a brief description of Kane’s
method is given and each step on the way to the computation
of Hi is exhibited.

Let {F∗ur
,Fur}|nr=1 be respectively thegeneralized inertia

forces and generalized active forcesfor a system withn
degrees of freedom, and defined as:

F∗ur
=

p

∑
k=1

((
∂vck

∂ur

)T

Fink +
(

∂ωk

∂ur

)T

T ink

)
, r = 1, . . . ,n (12)

Fur =
p

∑
k=1

((
∂vck

∂ur

)T

Fk +
(

∂ωk

∂ur

)T

Tk

)
, r = 1, . . . ,n (13)

where p is the number of rigid bodies,ur |nr=1 are the

generalized speeds, { ∂vck
∂ur

, ∂ωk
∂ur
} are partial linear and an-

gular velocities,{Fink,T ink}, and {Fk,Tk} are the inertia
force / torquegenerated by the accelerated masses and in-
ertias, andresultant force / torquewhich is equivalent to a
set of contact and distance forces acting on thekth body,
respectively. To have the equations of motion, namely Kane’s
dynamical equations, one just needs to add the generalized
inertia and active forces and equate them to zero,

F∗ur
+Fur = 0, r = 1, . . . ,n (14)

1) Defining the partial velocities:Traditionally, thegen-
eralized speedsin Kane’s method are defined as functions of
the derivatives ofgeneralized coordinates. In spite of that,
we break out of the conventional routine by introducing the
{xpi , xai} asgeneralized vectorsto express the instantaneous
configuration of the leg, and define the followinggeneralized
velocities:

ui1 , cẋpi , ui2 , cẋai (15)

which make conceptually and visually simple to understand
and to follow the equations of motion. Then, the velocities
of the mass centers of the arm and forearm are computed as
below:

cvpic = l
2

cẋpi ,
cvaic = l cẋpi +

L
2

cẋai (16)

and, sinceczpi is orthogonal toczai, the angular velocities
associated to the arm and forearm are resolved as follows:

cω pi = cxpi× cẋpi ,
cωai = cxai× cẋai (17)

Finally using (16) and (17), the partial linear and angular
velocity tensors are tabulated as in Table I with respect to
the generalized velocities in (15). In Table I, the[·]x denotes
a skew-symmetric matrix associated with a vector.



TABLE I

PARTIAL LINEAR AND ANGULAR VELOCITY TENSORS

cvpic
cvaic

cωpi
cωai

ui1
l
2 I3 l I3

[
cxpi

]
x

03

ui2 03
L
2 I3 03 [cxai]x

2) Generalized inertia forces:The generalized inertia
forces of the leg can be obtained in the light of (12) using
the inertia forces (Fink) and torques (T ink) of the arm and
forearm. To compute the inertia forces and torques from the
Newton-Euler equations, the acceleration of mass centers are
derived as follows,

capic = l
2

cẍpi ,
caaic = l cẍpi +

L
2

cẍai (18)

Respectively, by differentiating (17), the angular accelera-
tions of the arm and forearm are derived as:

cα pi = cxpi× cẍpi ,
cαai = cxai× cẍai (19)

3) Generalized active forces:The generalized active
forces of the leg can be calculated using (13) through the
torques{Tpi , Tai} being exerted and the gravitational forces
{Gpi , Gai} acting on the arm and forearm, respectively:

Tpi = (Γi0− Imi q̈i0−Γi f −Γi1)czpi Gpi =−m1g czb

Tai = Γi1
czpi +Γi2

czai Gai =−m2g czb
(20)

where Imi is the motor inertia andΓi f is the friction term
offering resistance on the actuated joint,

Γi f = fvi q̇i0 + fci sign(q̇i0) (21)

with fvi viscous andfci Coulomb friction coefficients. The
m1, m2 andg are the mass of the arm, mass of the forearm
and constant of gravity, respectively.

4) Inverse dynamic model:Finally, the inverse dynamic
model of each leg of the Quattro robot can be computed
by reassembling all the above equations into (14), which is
only a matter of algebraic manipulation. In the next Section,
it shall be shown that the inverse dynamic model of each leg
can be expressed as a function of its forearm direction:

γi = Hi(cẍai,
cẋai,

cxai) (22)

where γi = [Γi0,Γi1,Γi2]T is the required torque vector for
the motion of the leg. Here, ideally,{Γi1,Γi2} should be
identically0, since they correspond to passive universal joint.

V. VISION IN KINEMATICS AND DYNAMICS

In this section, the minimum variable sets necessary to
derive kinematic and dynamic models of the robot are
explored and shown to be fully computable only from visual
information.

A. Required Variable Set for Kinematics

The inverse differential kinematic modelscD inv
e , cM i and

cJ inv
i depend on the following variables:

• y
pi

the perpendicular vectors to the arms.
• xe x-axis of the end-effector frame.

• xai the directions of the forearms.

So, we need to computecy
pi

= czpi× cxpi. Here czpi is
constant andcxpi can be expressed as follows:

cxpi =
1
l

(
cBi1− cPi −

−−−−→cA iA i1−L cxai

)
(23)

wherel , L, cPi and
−−−−→cA iA i1 are constant parameters while the

directions of the forearmscxai can be measured byvision.
Then, the only remaining parameter to be provided iscBi1.

To build the last variablecxe = cy
e
× cze wherecy

e
=

−−−−→cC4C1
h

and cze = czb, one only needs to knowcC4 and cC1. Each
of cCi can also be expressed again in terms of thecBi1 and
some known constant vectors and parameters:

cC4 = cB41+
H
2

czp4−dx
cxb +hy

cy
b

(24)

cC1 = cB11+
H
2

czp1−dx
cxb−hy

cy
b

(25)

Consequently, provided that the variablescBi1, the attach-
ment points of the legs onto the nacelle, are known, one can
define all the required variable set for the kinematics. The
computation ofcBi1 are explained in the next subsection.

B. Estimation of Attachment Points

Recalling the assumption that the attachment pointcBi1

of the rod on the travelling plate is lying on the revolution
axis of the leg with radiusR, the 2nd constraint in (1) can
be exploited by applying to both edges of the rods in legs1
and2, and yields:

cn1
1

T cB11 =−R
cn2

1
T cB11 =−R

cn1
2

T cB21 =−R
cn2

2
T cB21 =−R

(26)

Taking into account the travelling plate parameters, one
can have the following relation:

cB11 = cB21+
H
2

czp2 +(d+2dx)cxb−
H
2

czp1 (27)

Replacing cB11 in (26) with (27), the following linear
system can be obtained from the image information:




cn1
1

T

cn2
1

T

cn1
2

T

cn2
2

T




cB21=




−R− cn1
1

T(H
2

czp2 +(d+2dx)cxb− H
2

czp1)
−R− cn2

1
T(H

2
czp2 +(d+2dx)cxb− H

2
czp1)

−R
−R




(28)

The least-square solution,cB21, of this 4×3 linear system
is unique provided that3 of the interpretation planes are
linearly independent. Using (27), we can also arrive atcB11.

After that, a second linear system can be rebuilt to
computecB31 andcB41 by repeating the same procedure on
legs3 and4. We would like to point out that this estimation
is performed in a single image. Note that this result was
already presented in [13] on a real I4R robot, and is adapted
here for the end-effector of the Quattro robot.



C. Required Variable Set for Dynamics

In addition to the required variable set of kinematics that
was built in the above subsections, the inverse dynamic
model of the robot depends on the following variables:
• y

ai
, zai the y andz axes of the forearm frames.

• ẍpi , ẍai , ẋpi , ẋai accelerations and velocities of the
unit vectors of the arm and forearm directions.

• q̈i0 , q̇i0 angular accelerations and velocities of the arms.
We compute thez andy axes of the forearm frames in the

camera frame, using theforearm directions, as below:
czai = (czpi× cxai)/‖czpi× cxai‖ , cy

ai
= czai×c xai (29)

The { cẍpi,
cẋpi} can be computed by differentiating (23)

with respect to time, which yields:

cẋpi =
1
l

(cḂi1−L cẋai

)
, cẍpi =

1
l

(cB̈i1−L cẍai

)
(30)

where{cB̈i1,
cḂi1} are obtained, using (4), as follows:

cḂi1 = cJBi

cζ̇ , cB̈i1 = cJ̇Bi

cζ̇ + cJBi

cζ̈ (31)

with cJ̇Bi
=

[
03×3 −εi hωz

cy
e

]
. The velocities{q̇i0, ẋai}

can be handed in using the differential kinematic relations in
(2), while the accelerations{ q̈i0, ẍai} have to be computed in
two different ways whether the error is defined as a difference
in the Cartesian space(CS) or in theleg orientation space
(LS). In the case of a Cartesian error, thecζ̈ will come from
the control law and accelerations will computed through:

q̈i0 = cḊ inv
ei

cζ̇ + cD inv
ei

cζ̈ , cẍai = cṀ i
cζ̇ + cM i

cζ̈ (32)

On the other hand, in the case of leg orientations error, the
cẍai will be coming from the control signal and this time the
remaining acceleration̈qi0 will be obtained as follows:

cζ̈ = cM†(cẌa− cṀ cζ̇ ) , q̈i0 = cḊ inv
ei

cζ̇ + cD inv
ei

cζ̈ (33)

where, in turn,cM ∈ℜ12×4 andcXa ∈ℜ12×1 are the stacked
matrices ofcM i and cxai. To compute (31) - (33), we need
to know the pose velocity. Thecζ̇ can be either obtained by
numerical differentiation of the pose or can be computed by
differentiating the constraints in (26), assuming that vision
can also quantify the edge velocitiescṅ j

i , and solving the
linear systems forcḂ11 andcḂ41. To calculatecḂ11, the new
linear system is written as follows:




cn1
1

T

cn2
1

T

cn1
2

T

cn2
2

T




cḂ11 =




−cṅ1
1

T cB11

−cṅ2
1

T cB11

−cṅ1
2

T cB21

−cṅ2
2

T cB21


 (34)

while cḂ41 can be computed similarly. Then, the pose veloc-
ity can be expressed as below:

cζ̇ =
[

cḂ41
T (cy

e
× cẏ

e
) · cze

]T
(35)

wherecḂ41 = cĊ4 and cẏ
e
= (cḂ11− cḂ41)/h.

Thereby, at this pointwe substantiate that exploiting only
the vision, it is possible to figure out the whole variable
sets of kinematics and dynamics.Note that this confluence
is made easy, thanks to the vector-based formulation of both
the dynamics and the differential geometry in the image.

VI. RESULTS

The proposed inverse dynamic model was verified with
the simplified model proposed in [4], which has already
proved to be as correct as the complete dynamic model
of the Quattro prototype obtained on Adams software. In
comparison of models, the maximum error rate of torques is
found to be4.84%, which means the modeling is accurate
enough to be used in control. The direct dynamic model,
that is used in the simulator, is also derived from [4], which
brings on a certain level of disturbance directly to the control
signal, since it is not the direct inverse of the proposed model.

The trajectory tracking simulations are conducted with a
classical CTC at500Hz expressed either in the CS or in the
LS (Figs. 5 and 6). An Adept motion with25mmaltitude and
300 mm length is chosen for performance evaluations in a
pick-and-place task. The maximum velocity and acceleration
of the motion are set as1.34 m/s and 1G, respectively.
The simulations are executed with different noise levels,
and results are compared. We injected either10µm and
1% or 100µm and 10% uncertainty on the geometric and
dynamic parameters, respectively. The sensor feedback mea-
surements are also corrupted. InCartesianspace CTC, the
feedback pose is perturbed with{10µm, 0.5◦}, {50µm, 1◦}
and {100µm, 2◦}, and in leg orientation space CTC, the
feedback signals (leg orientation unit vectors) are inde-
pendently deflected with0.01◦, 0.05◦ and 0.1◦ (degree),
respectively. In fact, the injected noises in two spaces are
not tenably comparable, since they are added at the final
stage of the feedback signals, but defensively to give an
intuition, the deflection of0.1◦ in a leg orientation drifts the
moving platform approximately1.4mmaway. The accuracy
and precision of the performed motion are assessed in terms
of mean and standard deviation of the tracking errors in
Cartesian space. Figs. 7 and 8 depict the superimposed
trajectories and tracking errors for Adept motion in both
spaces without any noise. The accuracy and precision values
are 2769 µm and 2183 µm for CS-CTC, and137 µm and
102 µm for LS-CTC. Comparing the space trajectory (top)
and the time trajectory (bottom) in Fig. 7, one can observe
that the errors inx and z are essentially due to some delay
in the tracking but do not appear as a deviation in space. In
Tables II and III, the accuracy (bold) and precision values
are tabulated for the same motion repeated under various
noise levels. From the results, it seems that sensing the leg

Fig. 5. Block diagram for Cartesian space CTC (CS-CTC).

Fig. 6. Block diagram for leg orientation space CTC (LS-CTC).
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Fig. 7. Superimposed trajectories (top) and tracking errors in CS for
CS-CTC. (tracking accuracy2769 µm, precision2183 µm) (Kp = 10,Ki =
0,Kd = 85)

orientations is more robust to errors since it is closer to the
essential variables in modeling. Hence, it puts the observation
of the end-effector out of being ultimate goal.

TABLE II

CARTESIAN SPACE TRACKING ERRORS(µm), FOR CS-CTC.

Sensor (µm, deg)
Noise 10, 0.5◦ 50, 1◦ 100, 2◦

Geo. (µm) 10 3234 3648 4389
Dyn. (%) 1 1828 1647 1717
Geo. (µm) 100 3791 3860 4916
Dyn. (%) 10 2172 1982 1697

TABLE III

CARTESIAN SPACE TRACKING ERRORS(µm), FOR LS-CTC.

Sensor (deg)
Noise 0.01◦ 0.05◦ 0.1◦

Geo. (µm) 10 216 774 1500
Dyn. (%) 1 77 172 287
Geo. (µm) 100 235 805 1539
Dyn. (%) 10 125 133 242

VII. CONCLUSIONS AND REMARKS

A novel vector-based approach for dynamic modeling
and control of a Quattro robot, based on leg observations,
is introduced and the first promising results of this new
methodology are presented, which encourage us to put it
in practice on a real Quattro robot. We will also define the
error in image space to make the control more robust to
errors and noises. In this work, all the required feedback
information is provided solely by the vision sensor and the
full control of the parallel robot is fulfilled only through
the forearms’ edges and their velocities in the image. In
fact, the edge velocities of a forearm assumed that can
be quantified from an image by vision, whereas they are
numerically differentiated in simulations. So, we put forward
for ourselves another objective to calculate them theoretically
as well. But initially, we should dispose of the problem
of detecting the leg edges in real images at high-speed.
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Fig. 8. Superimposed trajectories (top) and tracking errors in CS and
LS (x̃T

ai x̃ai) for LS-CTC. (tracking accuracy137 µm, precision102 µm)
(Kp = 20000,Ki = 20000,Kd = 80)

Consequently, once these snags along the way are dispelled,
this work will induce a new way of controlling parallel
mechanisms, since many of them contain slender structures.
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