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Abstract—One of the key steps in high-speed control of a [6]. Moreover, this observation will let us take advantage of
parallel robot is to define an efficient dynamic model. It is g vector-based formulation rather than a formulation based
usually not easy to have such a model for parallel robots, since on coordinates in dynamics as well
many of them have complex structures. Here, we propose a . . ' .
novel vector-based approach, which employs the leg orientations  IN this paper, the previous work done in [7], for the
of the robot observed by a calibrated camera, to obtain a kinematic modeling of the parallel robot (Section IlI),
simplified inverse projective dynamic model. This vector-based is pushed one step further by introducing a vector-based
methodology is a pioneer in the sense of solving the entire hard dynamic modeling based on leg orientations ( Section 1V).

modeling problem through the knowledge of only a nominal set ; ; ; . (i
of image features: the edges and the edge velocities of the IegsThe introduced vector-based dynamic model: (i) has a more

of the parallel robot. We verified our method on a simulator compact, readable and understandable written expression, (ii)

of the Quattro robot with a computed torque control. in particular, suppresses the use of direct and inverse of
the sine and cosinefunctions, (iii) is easier to implement,
I. INTRODUCTION and (iv) has a more geometric flavour and hence lessened

Parallel robots have superior skills: they can reach higtealculus. The leg orientations of the robot can be sensed with
speeds, show high-dynamic performances and achieve gogither a gyroscope, some special joint-sensors at extremities
repeatability [1]. These skills make them more attractive foof the legs or by vision. Here, vision is chosen, since it
many applications in comparison with serial robots. is contactless, is easy to integrate and reduces the system

However, their control is troublesome because of thealibration process by allowing all the measurements to be
complex mechanical structure, highly coupled joint motionperformed in a single reference frame. In Section V, it is
due to the closed-loop kinematic chains and many factoghown that vision is rich enough to furnish the required
such as clearances in passive joints, assembly errors, et@riable sets of kinematics and dynamics for control. Finally,
which degrade stability and accuracy. Hence, to profit fulljn Section VI, the proposed vector-based dynamic model,
from these parallel mechanisms, one requires an efficiemhich makes use of vision directly in the internal control-
dynamic model, which should be purified from the comioop to compensate for the dynamics, is validated on a
plexity of the system, to use in the well-knovaomputed simulator of the Quattro parallel robot. In order to make
torque control(CTC) [2]. Generally, in the literature, thesethe terminology clear and ease understanding of the paper,
models are considered to be written as a function of the jointe devote the next section to the geometry of the Quattro
coordinates due to the existence of only the actuator encod@arallel robot and the notation used throughout the paper.
as sensors for the measurement [3]. This makes derivation
of simple models difficult without making assumptions [4] Il. GEOMETRY OF THE MECHANISM
and overlooking some modeling errors in the mechanism.

What if we had additional sensors? The first attempt at The Quattro is composed of four identical kinematic
this solution is made in [5] by introducing extra sensors, oghains (legs), that carry the articulated travelling plate (na-
so-called metrological redundancy, to simplify the kinemati¢elle). Each of the4 kinematic chains is actuated from
models for easier control. So, having the inspiration othe base by a revolving motor, located Bt and has two
metrological redundancy, the immediate questions, whickonsecutive bodies (an arm and a forearm) linked with each
have to be answered to turn the tables on our side @ther atA;. Each forearm consists of two slim and cylindrical
the scenario, are “What actually should be sensed on tebaped rods fitted with ball-jointsA(;,Ai2) and Bi1,Bi2)),
mechanism?” and “How can the modeling be adapted fderming a parallelogram (see Fig. 1). At the top, the arms are
the sensed data?” to have lighter models that will yield bett@onnected to the motors, while at the bottom, the forearms
control. are connected to the nacelle. The latter is designed with four

In this work, observation of the orientations of the slimparts [8]: the two lateral bard@;Co] and [C3C4]) and the
and cylindrical shaped legs of the Quattro parallel robot igvo central bars linking lateral ones with revolute joints (Fig.
proposed as a solution. Indeed, it seems to be a good choiég, The nacelle also has an amplification system to transform
since they play a crucial role in kinematics of a parallel robothe relative rotatiorg into a proportional rotation = k 6)

in the end-effectolE. While modeling the kinematics and
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A. Representation and Projection of a Leg

The rods[Ai1Bi1] and [Ai2Biz] of the forearms are rep-
resented with binormalized &tker coordinate$x,n, n) [9].

A Here x, n and n denote the direction of the rod, the unit
vector orthogonal to the plane defined by the rod and the
center of projection, and the orthogonal distance of rod to
the center of projection, respectively. One advantage of this
representation is that, meanwhile, corresponds to the image
projection of the rod.

B[ B |By Assuming that the attachment poiBt; is lying on the
“H revolution axis of the leg (see Fig. 3), the geometry of the
Fig. 1. Leg parameters. robot calls forth the following constraints:
. ) chl ., ch2
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y C2 Cl Bn where °x,;, Cni' and R are the direction, the edge and the
=b radius of the cylindrical leg, respectively.
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Fig. 2. Nacelle parameters.
o i =12 3,4 denotes the legs ang= 1,2 denotes the Fe

Fig. 3. Visual edges of a cylinder.

edges of the forearm rods.
« Vectors are denoted with boldface characters and, in ) ) ) )
addition. unit vectors are underlined. B. Inverse Differential Kinematic Models of The Robot
e fp = (O,xb,xb,;b), Fe = (C4,ge,¥e,;e), The implicit kinematic modeling through the observation
Fe = (OcXe,Y.2e), Fpi = (Pi,xpi,xpi,;pi) and of the first legs/A;1Bij1] is noted as:
Fai = (AiXai,Y,,Zai) denote respectively the base, o :cD‘;nv cZ, .. —°M,°7 @)

end-effector, camera ané" arm and i*" forearm _ _ _
whose expressions are algebraic and can be found in [7].

reference frames.
IV. VECTOR-BASED DYNAMICS

« All the parameters are expressedFiE.
: |qr']° ;Sbttr;]i z;r)t(:}:: Ig;etﬂepgfrlgogré) fdglsgr?;;nés. Here, it is demonstrated, step by step, how to obtain a
' simplified inverse dynamic model for the robot through the
bxi = [ cos(gi,)cos(ay) cos(a,)sin(ai) —sin(gi,) |7 fusion of Khalil's [10] and Kane’s methods [11]. The reasons
bz, =[ —sin(aj) cogaj) O ] for choosing these methods are their modularity and ability to
Y= PZpi xPXpi be harmonized in a vector-based notation. The compactness
of the model comes from the direct imposition of the leg

Zpi
R i — iy
wherea; = o+ (i—1)3. orientations, granted by vision, into the equations of motion.

e Ve =[xY,2]" and w, are, in turn, the translational
velocity and the angular velocity around the fixed axisA. Inverse Dynamic Model of The Robot
‘ze of the end-effectorC4. Thus, the Cartesian pose khnajir's formulation [10] is followed to calculate the
velocity of the end-effector can be represented by:  jhyerse dynamic model of the Quattro parallel robot:

=[xy z w]

-
I =°Dq

o °AjjBjj = “Aj1Bi1 = “Ai2Bi2 = L°Xy;.
o« °PA; =1 cXpr

mp+i (97 3™ Hi)] ®

wherecDe.is the inverse of the inverse differential kinematic
model °DJ". The 4 d.o.f. platform dynamicsK, € 04*1)

+ “AitAi2 = °Bi1Biz = H “z;.
is computed via Newton-Euler formulation as in [10]. The

[1l. VECTOR-BASED KINEMATICS s : " ; ;
. ._relation between the Cartesian velocities of the terminal point
Here, some contexts necessary for the following secnoqﬁ theith leg and the end-effector pose is

are briefly recalled. For detailed explanations the reader is
referred to [7]. U =[1s —&h% | 4)



whereg; = &, =1, e3=¢&,=0. 3™ € 033 andH; € 0%*!  the inverse differential kinematic model of the leg is derived
are the inverse differential kinematic and inverse dynamias follows:

models for the leg, respectively. The following two subsec- S 0 0

tions are devoted to their derivations.

eyv= 1| SE 0 1| [y oy oz T ()
B. Inverse Differential Kinematic Model of a Leg Sty 10

Since the legs hold thB— (S—S), = R—U —U structure C.
equality [12], each of the legs of the robot is treated3as
d.o.f. by omitting the joints that connect the leg to the moving
platform. Respectivelyl d.o.f. for the actuated revolute joint n
R and2 d.o.f. for the passive universal joikt are required.
After that, the instantaneous pose of the leg is specified wi
the generalized coordinate§q;,, di,, Gi, } (Fig. 4), whereg,
and{q,, g, } designate the radian measures of the angles ! .
the irn% anzj forearm orientations, respectively. To obtain tkfg Hi is exhibited.

§ N . . N
differential kinematic model of the leg, the terminal point]c Let {Fua’ F“f}|r=1|_ bed resgectl}/ely t{:)egeneral;zed |n_;ahrt|a
positionB;; is written as below: orces and generalized active forcefor a system withn

degrees of freedom, and defined as:

CB' :CP' |C . CA.A. |_c . 5 T T
i1 =C P +1%pi + AiAIL+ L %y () . 2 [ave Iy
Fu,:kgl <0ur) ink+(TUr) , r=1...,n (12)

Fu':kzl<(c7w) Fk+(TUr) T Tebeen @9

where p is the number of rigid bodiesy |, are the

generalized speeds{%ﬁk , %—”L]‘rk} are partial linear and an-
gular velocities,{Fin,, Tin, }, and {Fy, T} are theinertia
force /torquegenerated by the accelerated masses and in-
ertias, andresultant force/torquevhich is equivalent to a
set of contact and distance forces acting on kifebody,
respectively. To have the equations of motion, namely Kane’s
dynamical equations, one just needs to add the generalized

inertia and active forces and equate them to zero,
F, +F, =0, r=1...,n (14)

Inverse Dynamic Model of a Leg

Here, Kane's method [11] is employed to obtain the
verse dynamic moddl;, which will be later plugged into

(3) to complete the full inverse dynamic model. It is also the
pat where the leg orientations come into the picture in the
dynamic model. In the sequel, a brief description of Kane’s
method is given and each step on the way to the computation

Fig. 4. Open tree structur®(-U—) of the leg. g 1z,)

Then, expressing the angular velocities of the kinematic o ) N B
chain with respect to fixed base frame yields: 1) Defining Fhe partial veIOC|t|es.'I'rad|.t|onaIIy, theg.en—
eralized speedm Kane’s method are defined as functions of
‘wpi = Uip°Zpi,  “Wai = (Gip +Gi,)°Zpi +Gi,°Z  (6) the derivatives ofgeneralized coordinatedn spite of that,
hereCw- and Ccon tth | locities of the V€ break out of the conventional routine by introducing the
where ;’?' an wab.r;prest.erl. esangulgr velocities o e{xpi, Xai} asgeneralized vector® express the instantaneous
arm and forearm. Differentiating (5) yields: configuration of the leg, and define the followiggneralized
d . . velocities
a(cBil) = ICXpi + I-Cxai (7)
where which make conceptually and visually simple to understand
and to follow the equations of motion. Then, the velocities
(8)
of the mass centers of the arm and forearm are computed as

A ¢y NS
Ui, = CXpia Ui, = “Xai (15)

Cy, _C . C Cy, _C . C
lpi— (A)p|>< lpia Xai = “Wai X "Xaj

Equation (7), using (8), can be rewritten as below: below:
| G, Ve = 5K Ve =1 Kpit 5% (16)
Bu=[Vi SZ sV, ]| G ) and, since’z, is orthogonal toz,, the angular velocities
cJ; Giz associated to the arm and forearm are resolved as follows:
where Cwpi = Kpi X Kpi,  “Wai = Kaj X Ky 17
§ =L [ x il . Vi =] CXpi+ S 2 (10) Finally using (16) and (17), the partial linear and angular

velocity tensors are tabulated as in Table | with respect to
and®J; € 0%<3 is the forward differential kinematic model of the generalized velocities in (15). In Table I, thg denotes
theith leg. Working on the matri¥J;, the analytic form of a skew-symmetric matrix associated with a vector.



TABLE |

« X, the directions of the forearms.
PARTIAL LINEAR AND ANGULAR VELOCITY TENSORS

So, we need to computyy . = “zj; x °X,;. Herez,; is

l [ “vpic [ “Vai [ “wpi [ “wni | constant andx, can be expressed as follows:
up, [ 31s [ s | [, 03
i 0 L Xailx 1
Ui, 3 | 313 03 [*Xail Clpi -3 (cBil _°p, cm _ Lclai) (23)

N .

2) Generalized inertia forces:The generalized inertia Wherel, L, °P; and®AiA;; are constant parameters while the
forces of the leg can be obtained in the light of (12) usinglirections of the forearm&x,; can be measured byision
the inertia forcesKin,) and torques Tin,) of the arm and Then, the only remaining parameter to be providefHs.
forearm. To compute the inertia forces and torques from thko build the last variabléx, = %y, x °z, where®y_ = CCét%
Neyvton—EuIer equations, the acceleration of mass centers aiied °z, = °z,, one only needs to knowC, andC;. Each
derived as follows, of °C; can also be expressed again in terms of°g and

o o o some known constant vectors and parameters:
Capi, =5 Kpis  @aic = Kpi+ 5 K (18) P
H

Respectively, by differentiating (17), the angular accelera- Ca="Bar+ 5 Zps = Ko+ 1y %y, (24)
tions of the arm and forearm are derived as:

H
api = Kpi X Kpi,  “Oai = Kgi X Ko 19) Cr="But+ 5Zp — %~y Y, (25)

3) Generalized active forcesThe generalized active  Consequently, provided that the variabf®, the attach-
forces of the leg can be calculated using (13) through th@ent points of the legs onto the nacelle, are known, one can
torques{ Tpi, Tai} being exerted and the gravitational forcesgefine all the required variable set for the kinematics. The
{Gpi, Gai} acting on the arm and forearm, respectively: computation of°B;; are explained in the next subsection.

Tpi = (Tio—ImGi — Fiy —Ti1)°Zpi | Gpi = —Mg “z,
Tai = Fi1Zpi + 22, Gai = —Mpg “z,
(20) Recalling the assumption that the attachment p6Bit
where I, is the motor inertia and’j; is the friction term of the rod on the travelling plate is lying on the revolution
offering resistance on the actuated joint, axis of the leg with radius, the 2" constraint in (1) can
M = fu Gio + fo SigN(G,) 1) be exploited by applying to both edges of the rods in l&gs

and 2, and vyields:

with fy, viscous andf; Coulomb friction coefficients. The o7 \T

my, mp andg are the mass of the arm, mass of the forearm ‘n; Bu=-R  °n; “Ba=-R
and constant of gravity, respectively. n2'eBj; = —R 2By = —R

4) Inverse dynamic modelFinally, the inverse dynamic

model of each leg of the Quattro robot can be compute : .
by reassembling all the above equations into (14), which f@n have the following relation:
only a matter of algebraic manipulation. In the next Section,
it shall be shown that the inverse dynamic model of each leg
can be expressed as a function of its forearm direction:

B. Estimation of Attachment Points

(26)

d Taking into account the travelling plate parameters, one

H H
CB]_]_ = CBZ]_"‘ ECZDZ + (d + de)CXb - Eczpl (27)

o e Replacing®By; in (26) with (27), the following linear
_ .(C C C
W = Hi("Rai, Xai, Xai) (22) system can be obtained from the image information:

where y; = [[io,Ti1,Ti2]" is the required torque vector for

T _p_cnlT/Hc ¢y, _Hc
the motion of the leg. Here, ideallyi;,l 2} should be °nj R CD%T(ﬁczsz“(dJ“ZdX)fb ﬁczpl)
identically0, since they correspond to passive universal joint CnfT By — —R=°n7" (3Zpa+ (d+20x)°xp — 5 °Zp1)

Cnl
V. VISION IN KINEMATICS AND DYNAMICS CEET —S
22 p—

In this section, the minimum variable sets necessary to (28)
derive kinematic and dynamic models of the robot are The least-square solutiofB,1, of this 4 x 3 linear system
explored and shown to be fully computable only from visuals unique provided tha8 of the interpretation planes are
information. linearly independent. Using (27), we can also arrivéBat.

After that, a second linear system can be rebuilt to
_ _ o _ - compute®Bz; and°Bay by repeating the same procedure on

The inverse differential kinematic modeiB ™, “Mi and  |egs3 and4. We would like to point out that this estimation
°J™ depend on the following variables: is performed in a single image. Note that this result was
; the perpendicular vectors to the arms. already presented in [13] on a real 4R robot, and is adapted
x-axis of the end-effector frame. here for the end-effector of the Quattro robot.

A. Required Variable Set for Kinematics

. Xp
Xe



C. Required Variable Set for Dynamics VI. RESULTS

In addition to the required variable set of kinematics that The proposed inverse dynamic model was verified with
was built in the above subsections, the inverse dynamibe simplified model proposed in [4], which has already
model of the robot depends on the following variables:  proved to be as correct as the complete dynamic model

o Y. Za they andz axes of the forearm frames. of the Quattro prototype obtained on Adams software. In
o Xpi, Xai, Xpi, X5 accelerations and velocities of thecomparison of models, the maximum error rate of torques is
unit vectors of the arm and forearm directions. found to be4.84% which means the modeling is accurate

« i, G, angular accelerations and velocities of the armgnough to be used in control. The direct dynamic model,

We compute the andy axes of the forearm frames in the that is used in the simulator, is also derived from [4], which
camera frame, using thferearm directionsas below: brings on a certain level of disturbance directly to the control

signal, since it is not the direct inverse of the proposed model.

Zai = (Zpi % Kai) %20 % il Y= *Zai ¥ Xai (29) The trajectory tracking simulations are conducted with a
The { “X,i, “X,i} can be computed by differentiating (23) classical CTC ab00Hz expressed either in the CS or in the
with respect to time, which yields: LS (Figs. 5 and 6). An Adept motion wittb mmaltitude and
. o . e i e 300 mm length is chosen for performance evaluations in a
Xpi = 1 (“Biz —L%ai) , Kpi = T (*Bin—L%)  (30) pick-and-place task. The maximum velocity and acceleration

of the motion are set a8.34 m/s and 1G, respectively.

) . ) o ) The simulations are executed with different noise levels,
Bin= " ¢, Bin= 35 “(+3 ¢ (31) and results are compared. We injected eith®um and

1% or 100um and 10% uncertainty on the geometric and
Pl]ynamic parameters, respectively. The sensor feedback mea-

can be handed in using the differential kinematic relations isurements are also cormunted. Tartesianspace CTC. the
(2), while the accelerationfstj,, X, } have to be computed in ; pred. Op .
feedback pose is perturbed wifiOum, 0.5°}, {50um, 1°}

two different ways whether the error is defined as a difference

in the Cartesian spac€CS) or in theleg orientation space and {100“”.‘7 2°}, and in Igg or!entat|qn space CTC, the
. R feedback signals (leg orientation unit vectors) are inde-
(LS). In the case of a Cartesian error, fifewill come from

the control law and accelerations will computed through: penden_tly deflected W'tm.'o.l , 0.05 _and .0'1 (degree),
respectively. In fact, the injected noises in two spaces are

Gig ZCDQ"“’CZ +°D(;”"°Z, “Xai = M € +°M; ¢  (32) not tenably comparable, since they are added at the final
riage of the feedback signals, but defensively to give an
intuition, the deflection 0.1° in a leg orientation drifts the
moving platform approximatel§.4mmaway. The accuracy
. i o . . and precision of the performed motion are assessed in terms
¢ ="MT(Xa—°M®C), G, ="DaV°{+°DI"°{ (33) of mean and standard deviation of the tracking errors in
where, in turn®M e 01124 and®X, € 012%! are the stacked Ca_rtesiap space. Fig§. 7 and 8 depict the s.upe.rimposed
matrices of°M; and °x,;. To compute (31)-(33), we need trajectorlgs and tracklpg errors for Adept mot|op in both
to know the pose velocity. Th%f can be either obtained by SPaces without any noise. The accuracy and precision values
numerical differentiation of the pose or can be computed b€ 2769 um and 2183 um for CS-CTC, andl37 um and
differentiating the constraints in (26), assuming that visiorf02 Hm for LS-CTC. Comparing the space trajectory (top)
can also quantify the edge velocitié'gij, and solving the and the time trajectory (bottom) in Fig. 7, one can observe

linear systems fofB1; and®Byy. To calculaté®By 1, the new that the errors inx and z are essentially due to some delay
linear system is written as follows: in the tracking but do not appear as a deviation in space. In

Tables Il and lll, the accuracy (bold) and precision values

where{CBil,CBil} are obtained, using (4), as follows:

with ¢J, = [ Osx3 —&haw,, ]. The velocities{diy, Xy}

On the other hand, in the case of leg orientations error, t
%, will be coming from the control signal and this time the
remaining acceleratiotj, will be obtained as follows:

T . 1T N i
CD%T —CD%T B11 are tabulated for the same motion repeated under various
CnfT By — —C'niT °Bn1 (34) Noise levels. From the results, it seems that sensing the leg
cnhl chllc
n; —"ny “Bo1 5o
T . &
CD% _cng By gd gd Qd oTe ® IDM L’v
while °B,1 can be computed similarly. Then, the pose veloc- :
ity can be expressed as below: - p— -
c7 __ S T . T = -
(= [ Bar (VX V) Ze ] (35) Fig. 5. Block diagram for Cartesian space CTC (CS-CTC).
Where°B41 = CC4 and C.Xe = (CBll — CB41)/h. Simulated Camera _
Thereby, at this poinive substantiate that exploiting only - %}7

the vision, it is possible to figure out the whole variable =
sets of kinematics and dynamidsote that this confluence
is made easy, thanks to the vector-based formulation of bo

the dynamics and the differential geometry in the image. Fig. 6. Block diagram for leg orientation space CTC (LS-CTC).
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orientations is more robust to errors since it is closer to the
essential variables in modeling. Hence, it puts the observation
of the end-effector out of being ultimate goal.
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Superimposed trajectories (top) and tracking errors in CS and
LS (X;ixai) for LS-CTC. (tracking accurac#37 um, precision102 pm)
(Kp = 2000QK; = 20000K4 = 80)

Consequently, once these snags along the way are dispelled,

TABLE I
CARTESIAN SPACE TRACKING ERRORY M), FORCS-CTC.
Sensor m, deg
Noise || 10, 0.5° 50, 1° 100 2°
Geo. um) 10 3234 3648 4389
Dyn. (%) 1 1828 1647 1717
Geo. um) 100 3791 3860 4916
Dyn. (%) 10 2172 1982 1697
TABLE I E%
CARTESIAN SPACE TRACKING ERRORY M), FORLS-CTC.
Sensor deg [3]
Noise || 0.01° 0.05° 0.71°
Geo. um) 10 216 774 1500 [4]
Dyn. (%) 1 77 172 287
Geo. um) 100 235 805 1539
Dyn. (%) 10 125 133 242 [5]
VII. CONCLUSIONS AND REMARKS [6]

A novel vector-based approach for dynamic modeling
and control of a Quattro robot, based on leg observationgy)
is introduced and the first promising results of this new
methodology are presented, which encourage us to put 'g]
in practice on a real Quattro robot. We will also define the
error in image space to make the control more robust to
errors and noises. In this work, all the required feedbac
information is provided solely by the vision sensor and theio]
full control of the parallel robot is fulfilled only through
the forearms’ edges and their velocities in the image. Ip,
fact, the edge velocities of a forearm assumed that can
be quantified from an image by vision, whereas they ard?]
numerically differentiated in simulations. So, we put forward
for ourselves another objective to calculate them theoreticallys]
as well. But initially, we should dispose of the problem
of detecting the leg edges in real images at high-speed.

this work will induce a new way of controlling parallel
mechanisms, since many of them contain slender structures.
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