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Abstract— We synthesize grasping points for planar grasps.
We formulate and solve the problem from control theory point
of view. Designed control law moves initial arbitrary contact
points smoothly from a non force-closure configuration to a
closest force-closure one. Control law is independent from the
friction coefficient, and it is robust to small changes in shape and
pose of the object, and it can track a force closure configuration
on the object when the object moves and deforms. Final control
error yields a quantitative measure for the solution. We also
impose unilateral constraints to the control law to eliminate
solutions which are not feasible for the hand. We finally
show how to synchronize synthesis of grasping points and the
reaching motion of the arm-hand manipulator for grasping.
This melts the computation time of the synthesis of grasping
points in the reaching motion of the manipulator. We validated
the proposed approach on real images of the objects.

I. INTRODUCTION

In this paper, we reformulate the synthesis of grasping
points for two-fingered frictional force-closure planar grasps.
Synthesis of grasping points is to decide where to place
fingertips on an object so that we can hold it firmly. This
is an inverse problem, and it has usually multiple solutions
depending on the object geometry. Thus finding an optimal
solution for grasping points is still one of the important
problems of object grasping. One can read more on grasping
in [1], [2], [3], [4].

Additionally, a grasp is supposed to be planar if grasping
points of the grasp and their normal vectors stay on a plane
π . As long as there exists a plane such π on the object, the
object can be grasped planarly. This means that the object can
be either relatively thinner in one dimension (but still thick
enough to be grasped) or large in all dimensions. Fig. 1
shows a sphere and a vase which contain π-like planes.
For example, a sphere can be grasped planarly from any
of its great circles where the sphere is intersected by a
plane passing through its center. The vase shown in Fig. 1.b
contains two horizontal planar grasping planes — solid lines.

Here, we synthesize grasping points from a control point
of view, and this has strong advantages.

Firstly, it has a coherent framework with control theory
of a robotic manipulator. We can exploit all the control
theory of robotics for our use. During synthesis of force-
closure grasping points, we choose arbitrarily located two
non-force closure contact points, and then move them like
two mobile robots on the curved road of the object boundary.
Designed control law drives the contact points smoothly and
parks them to the closest force-closure configuration. This
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Fig. 1. A sphere can be grasped planarly from any of its great circles (a).
A vase and its possible planar grasping planes — solid lines (b).

approach brings two more advantages: (i) In every grasp
planning once the force-closure grasping points are found on
the object, the next step for an arm-hand manipulator is to
reach from an initial posture to these desired grasping points.
Here, we have chance to synchronize both the synthesis of
grasping points and the reaching motion of the manipulator.
Imagine that the smooth trajectories of the contact points dur-
ing synthesis are given as reference inputs to the arm-hand
manipulator to guide it from its initial posture to the desired
final grasping points on the object. In other words, this means
that while the contact points are traveling to a force-closure
configuration, arm-hand manipulator is just pursuing behind
with a proper tracking latency. Once the contact points are
parked to a final force-closure configuration, the fingers of
the arm-hand manipulator are straightaway there to grasp
the object. Thus, the computational time of the synthesis
of the grasping points is melted completely in the reaching
motion of the manipulator. Otherwise, a control iteration,
which moves contact points to a force-closure configuration,
takes 1/2500 seconds 1. Thus a force-closure solution with
100 iterations will take 1/25 seconds. (ii) Imagine that during
synthesis of grasping points the object deforms and changes
its Euclidean pose continuously. The stable control law still
drives the contact points to a force closure configuration.
Once the contact points are on a force closure configuration,
the control law keeps them there even though the object
is still deforming and moving in the scene. Thus proposed
control-based approach is robust to disturbances and can
track the force closure configuration on the moving object.

Secondly, our approach is applicable to wide range of ob-
jects, since most of the object contours can be approximated
as smooth curves on the plane with elliptical fourier descrip-
tors (EFD) [5]. And finally, it is a simple and automatic way
to synthesize grasping points.

1Control algorithm is implemented in Matlab software, which runs on a
PC with intel i3 CPU @2.13 GHz and 4GB RAM.



The rest of this paper goes on as follows: Section II talks
about the related work; Section III explains two-fingered
frictional force-closure grasps; Section IV formulates and
solves the two-fingered frictional force-closure grasp prob-
lem from a control point of view; Section V shows how to
impose unilateral constraints for the grasp solution; Section
VI illustrates the synthesis of force-closure grasping points
on a deforming and moving object; Section VII proposes a
general architecture to synchronize the synthesis of grasping
points and reaching motion of the manipulator; and Section
VIII concludes the paper and gives some future perspectives.

II. RELATED WORK

Nguyen was the first who formulated and synthesized
geometrically the two-fingered frictional force-closure grasps
of polygonal objects [6]. Then, Faverjon and Ponce extended
Nguyen’s work for the case of piece-wise smooth curved
objects [7]. Later, Blake solved the planar grasping problem
of curved object from a symmetry theory point of view [8].

Today computer vision techniques are much skillful than
a decade ago, and they can inform the robot about the
object geometry [9], [10], [11]. Thus starting with a known
object shape is not a strong assumption. In the literature,
given the shape of the object, the synthesis of grasping
points is performed through three groups of approaches:
(i) Brute Force — This approach checks every contact
configuration if it satisfies geometrical conditions associated
with good grasps or not. It is computationally exhaustive;
(ii) Optimization — This approach optimizes a grasp quality
measure defined over the entire contact configuration space
of the object (e.g., [12], [13], [16]). It is much faster than
a brut force approach; (iii) Computational Geometry —
This approach first analyzes the shape of the object through
geometric algorithms, and then computes directly the contact
locations (e.g., [7], [8]). It is more efficient and faster than
the previous two types of approaches.

Apart from above, and compared to the rest of the vast
literature of grasping, there are relatively few researchers
who used control-based approaches (e.g., [17], [18], [19])
to synthesize complete grasps. These works use multiple
concurrent controllers (e.g., learning based, behavior based,
control bases) to overcome complex grasping problem by di-
viding it to smaller subtasks. These control-based approaches
start with an approximate grasp and then modify it towards a
good grasp by taking small contact steps along the unknown
object surface based on local tactile feedback of fingertips.

Here, our work proposes a strong coherent complementary
pre-stage to these control-based fine grasping approaches.

III. TWO-FINGERED FRICTIONAL GRASPS

Here we explain two-fingered grasps with frictional point
contacts. We choose a point contact with friction when
friction exists between the fingertip and the object. In a point
contact with Coulomb friction model, we can apply force to
an object in any direction that is oriented within the friction-
cone. The apex of the friction-cone coincides with the contact
point, and the cone axis is aligned with the inward object

boundary normal. The cone aperture is defined by the static
friction coefficient µ > 0, see Fig. 2.a. Now, if we imagine

Fig. 2. Point contact with Coulomb friction model µ = tan α (a). Applied
force f and the extreme generatrix forces { f 1, f 2} of the friction cone (b).

the extreme rays of this friction-cone as generatrix forces,
Fig. 2.b, then we can replace any applied force, which is
pointing inside this friction-cone, with a positive combination
of these generatrix forces:

f = a f 1 + b f 2 , a > 0 , b > 0 , f > 0 (1)

where f and { f 1, f 2} are the applied and the generatrix
forces, respectively.

The necessary and sufficient condition for a force-closure
grasp is to construct a torque-closure, since every translation
is a rotation about an axis at infinity. For two-fingered
frictional grasps, a torque-closure (thus also force-closure)
grasp exists when each contact point lies within the friction-
cone of the other [6]. See Fig. 3.

Fig. 3. Two-fingered frictional grasps of a cell phone. The grasp (a) satisfies
a force-closure, but the grasp (b) does not.

IV. GRASP PROBLEM FROM A CONTROL POINT OF VIEW

Let the contour of the object be a smooth (twice contin-
uously differentiable), closed, simple (no self-intersections)
curve, and let any contour point position be represented by a
vector-valued function p(s(t)) where s(t)∈ I is an arc length
parameter at time t over a set I. Then, the unit tangent τ(s)
and unit inward normal n(s) vectors of this curve at arc
length s are given as follows:

τ(s) =
∂ p(s)

∂ s
,

[
τx
τy

]
, τ(s) =

τ(s)
‖τ(s)‖

(2)

n(s) ,

[
−τy

τx

]
, n(s) =

n(s)
‖n(s)‖

(3)

Afterwards, the control problem for a two-fingered fric-
tional grasp can be stated as follows:



Control Problem: Let p(s∗1) and p(s∗2) be the two un-
known grasping points that satisfy the force-closure con-
straint (FC : ℜ2×ℜ2→ℜ) on the object boundary:

−ε 6 FC( p(s∗1), p(s∗2)) 6 ε (4)

where ε is a positive threshold defined by the aperture of the
friction-cone and it limits the force-closure region. Let also
p(s1) and p(s2) be two arbitrary contact points which do
not satisfy the force-closure constraint. Then find a control
law u(t) such that (s1(t)→ s∗1, s2(t)→ s∗2) while ti > ti−1.

Now, we explain the “perfect” force-closure condition for
two-fingered frictional grasp in geometrical terms.

Perfect Force-Closure: This appears when the line join-
ing the two contact points { p(s1), p(s2)} aligns with both of
the normals {n(s1), n(s2)}, or equivalently when the force
closure constraint is FC = 0.

From now on for the simplicity of notation, we will drop
the arc length parameter s from the variables (e.g., p(s1)≡
p1, n(s1)≡ n1, τ(s1)≡ τ1). The perfect force-closure condi-
tion is satisfied when the following two differentiable error
functions are minimized:

e1 = θ1 = arccos( `T
12 n1 ) (5)

e2 = θ2 = arccos( `T
21 n2 ) (6)

Note that these error functions are independent from the
friction coefficient. When θ1 (resp. θ2) goes to zero, the unit
vector `12 (resp. `21) pointing from the first (resp. second)
contact point to the second (resp. first) aligns itself with
the normal vector of the first (resp. second) contact point.
If the friction coefficient is given, then we have chance to
decide whether the contact points’ configuration is force-
closure or not before the errors are minimized completely.
To do so, we first choose the biggest angle, θ =max(θ1, θ2),
and then compare it with the half aperture angle, α , of the
friction-cone. If θ 6 α then the contact points’ configuration
is force-closure, and as well as m=(α−θ)/α gives a precise
quantitative measure for the stability of the grasp. Closer the
m to 1, the more robust is the grasp. See Fig. 4.

We calculate the control law u= [ṡ1, ṡ2]
T from Lyapunov’s

direct method. We first choose a positive definite Lyapunov
function Vθ = 1/2(e2

1 + e2
2) > 0. Control law u is hidden in

V̇θ , and it should be chosen such that V̇θ < 0 so as to move
contact points toward a force-closure configuration:

V̇θ = e1 ė1 + e2 ė2 = e1 A1 u + e2 A2 u < 0 (7)

From (7), we can write the following control law:

u = −λθ (AT
1 e1 + AT

2 e2) (8)

where λθ is a positive scalar controller gain. See Appendix
for matrices A1 and A2. The control law u moves the contact
points to the closest solution. Now, we can update contact
points’ positions with the control law u = [u1,u2]T as below:

p(s1) = p(s1 + ∆t u1) , p(s2) = p(s2 + ∆t u2) (9)

where ∆t = ti − ti−1 is the control sampling time.

Fig. 4. Force-closure 0 < θ1 6 α and 0 < θ2 6 α (a). Perfect force-closure
θ1 = θ2 = 0 (b).

Example: In Fig. 5.a, we see an initial non force-closure
configuration of the contact points on a cell phone with the
normal vectors. In Fig. 5.b, we see the final force-closure
configuration of the contact points with their trajectories on
the cell phone boundary. In Fig. 5.c, we see the errors of
the angles θ1 and θ2. Assuming that the friction between a
fingertip and the cell phone is µ = 0.364 (α = 20◦), we can
conclude that the configuration is a force-closure, when both
errors of the angles are smaller than the half-angle α of the
friction cone.

V. CONTROL LAW WITH UNILATERAL CONSTRAINTS

Object can be larger in one dimension than the maximal
opening of any two fingers. In this case, we do not want
a solution for grasping points that stays at the extremities
of the object. We therefore integrate a maximal opening
distance dmax of fingers in the synthesis of grasping points
as a unilateral constraint such that:

c = ‖p1 − p2‖ < dmax (10)

Constraint (10) lets us to check if the solution is in the
workspace of fingers (c < dmax) or not (c > dmax). For the
new control law, we add a constraint error function which
attracts contact points to the dexterous workspace of fingers:

ed = κ (1/2)
(
(p1 − p2)

T (p1 − p2)−d2 ) (11)

where d is, for example, half-distance of the maximal open-
ing of the fingers; and where κ is defined as follows:

i f c > dmax then κ = 1 until ed 6 0 (12)
otherwise κ = 0

We choose another positive definite Lyapunov function for
the constraint Vd = (1/2)e2

d > 0. The time derivative of
Lyapunov constraint function should be negative definite so
that the constraint error decreases:

V̇d = ed ėd < 0 (13)



Fig. 5. Initial non force-closure configuration (a). Final force-closure
configuration with stability measure m = 0.95 (b). Evolution of angle errors
during alignment of the joining line with the normal vectors of the contact
points (c).

where

ėd = Du , D = [(p1 − p2)
T τ1, −(p1 − p2)

T τ2 ] (14)

Then, we write together (7) and (13) to develop the new
control law:

V̇θ + V̇d < 0 (15)

which gives:

e1 A1 u + e2 A2 u + ed Du < 0 (16)

From (16) the new control law, which satisfies (15), can be
written as below:

u = −Λ1 (AT
1 e1 + AT

2 e2) − Λ2 DT ed (17)

where Λ1 and Λ2 are 2× 2 positive definite diagonal con-
troller gain matrices. Before using this control law, we do
a final trick to normalize the contributions from each of the
errors, since the force-closure errors are in angles and the
constraint error is in squared distance. Otherwise, we can
suffer a little bit for a proper choice of the controller gains
Λ1 and Λ2. Without loss of generality, the controller gains
Λ1 and Λ2 can scale the values but cannot change their signs.
Therefore, we can rewrite the control law (17) as follows:

u = −λθ tanh(AT
1 e1 + AT

2 e2 ) − λd tanh(DT ed ) (18)

where λθ and λd are the new positive scalar controller gains,
and now they can be easily chosen. Arranging them such
that λθ < λd gives more priority to the constraint, and this
forces the solution to be in the workspace of the fingers. This
new control law can be thought as a sliding mode control
(SMC), which is a robust control [14]. To increase the contact
stability [15], one can add more constraints such that the
solution: (i) has smaller distance between the contact points;
(ii) has lower curvature around the contact points; and (iii)
is closer to the center of mass of the object.

We can generalize (18) for multi-fingered grasps with one
force-closure and k constraint error functions:

u = −

(
λFC tanh

(
∂V̇FC

∂u

)
+

k

∑
i=1

λci tanh
(

∂V̇ci

∂u

))
(19)

where V̇FC and V̇ci are time derivatives of the designed
positive definite Lyapunov functions of the force closure and
the constraints, respectively. Assuming that the priorities of
constraints are ordered from the lowest to the highest, the
controller gains can be written as follows:

0 < λFC < λc1 6 λc2 6 . . . 6 λck (20)

The priority order of the constraints depends on the object,
the hand, and the task. It should thus be done carefully.
The force-closure controller gain λFC should have the lowest
priority so that the solution satisfies the constraints, or we
can disable it until all the constraints are satisfied:

λFC = λFC (1 − (κc1|κc2| . . . |κck)) (21)

where κci ∈ {0,1} are the constraints’ on/off values, and
where | is an OR logic gate.



Example: In Fig. 6.a, we see a pen with its boundary curve
and its initial non force-closure contact points. In Fig. 6.b,
we see the synthesis of force-closure grasping points without
the maximal distance constraint, and in Fig. 6.c, we see
this with the maximal distance constraint. The initial contact
point locations in two cases are the same.

Fig. 6. Synthesis of grasping points on a pen. The boundary curve of
the pen and the initial contact points (a). Synthesis of a force-closure
configuration without the constraint (b), and with the constraint (c).

VI. ROBUSTNESS TO SHAPE AND POSE CHANGES

Arc-length positions s1 and s2 of synthesized force-closure
grasping points are intrinsically invariant under uniform
scaling and translation, but not under rotation. Here, we
show that the control law is also robust to rotations and
to deformations. We illustrate this on a circle curve which
deforms itself continuously to an ellipse. We also at the
same time rotate the deforming curve counter-clockwise. Let
the initial circle has a radius r units (i.e., an ellipse with
major and minor lengths equal to radius, a = b = r). Let also
the deformation of the ellipse be given by a = a + ∆ t va
and b = b + ∆ t vb, where va and vb are the deformation
velocities along the major and minor axes at each sampling
time. Finally, let the initial rotation angle β be changing with
an angular velocity ωβ such that β = β + ∆ t ωβ . Figure 7
shows the tracking of a force-closure configuration on the
curve while the curve deforms and rotates. We conclude
this part by stating that the control law is robust to small
Euclidean disturbances on the pose and also to the small
deformations on the shape of the object. Or from another
point of view, the control law can track, without any extra
computational effort, a force-closure configuration on the
object even though the object moves and deforms.

VII. SYNCHRONIZING GRASPING POINTS SYNTHESIS
AND REACHING MOTION OF THE MANIPULATOR

Here we give a general architecture and formulation to
synchronize the synthesis of grasping points and the reaching
motion of the manipulator. See Fig. 8.

Let f1 and f2 be the Cartesian positions of the two
fingertips with respect to manipulator base frame. Then, we
relate the velocities of the fingertips to the velocities of the
joints of the manipulator through the Jacobians J1 and J2:

ḟ1 = J1 q̇ , ḟ2 = J2 q̇ (22)

Fig. 7. Control law keeps the grasping points in the force-closure
configuration while the curve deforms and rotates. Dots show the initial
circle curve with r = 3. Deformations on the major and minor axes are
a = [3 → 4] and b = [3 → 0.5], and changes in the rotation angle is
β = [0◦ → 45◦]. Blue ellipse is the final deformed and rotated curve with
its force-closure grasping points (black and red solid big dots). Trajectories
of the force-closure grasping points are shown in red and black solid line
traces.

where q = [qT
arm, qT

f inger 1, qT
f inger 2 ]

T is the vector of joint
coordinates. Let also p∗1 and p∗2 be the desired positions of the
fingertips computed from the contact point locations which
are coming from the control-based synthesis algorithm. Then,
we can build a simple tracking error for fingertips:

e1 = f1 − p∗1 , e2 = f2 − p∗2 (23)

We follow again Lyapunov’s direct method to write the
control law of the manipulator during reaching motion. We
choose the following Lyapunov function for the manipulator:

Vs =
1
2
(

eT
1 e1 + eT

2 e2
)
> 0 (24)

and differentiating this function with respect to time yields:

V̇s = eT
1 ė1 + eT

2 ė2 < 0 (25)

which should be smaller than zero at each iteration so that the
manipulator pursues the trajectories of contact points during

Fig. 8. Synchronizing synthesis of grasping points with reaching motion.



synthesis. We rewrite (25) explicitly to appear the control
law q̇ of the manipulator as below:

eT
1 (J1 q̇ − ṗ∗1 ) + eT

2 (J2 q̇ − ṗ∗2 ) < 0 (26)

From (26), we calculate the control law as follows:

q̇ = −λ AT +
AT B
AAT , λ > 0 (27)

where A and B are as below:

A = eT
1 J1 + eT

2 J2 , B = eT
1 ṗ∗1 + eT

2 ṗ∗2 (28)

VIII. CONCLUSIONS

In this paper, we reformulated the two-fingered frictional
planar force-closure grasping problem from a control point of
view. Strong sides of this approach are: (i) It is independent
from the friction coefficient; (ii) It yields a quantitative
measure for the final force-closure configuration; (iii) It
proposes a general control law for multi-fingered grasps with
unilateral constraints; (iv) It is robust to small changes in
shape and pose of the object; (v) It tracks a force closure
configuration on the object even though the object moves
and deforms continuously; and (vi) It can be synchronized
with the reaching motion of the arm-hand manipulator.

Weak side of this approach is: On a concave object if the
initial contact points are far from a force closure solution,
then the contact points can stick to a local minima which is
not a force closure. Proposed approach guarantees a force-
closure solution for the time being on the convex objects.

Future works are: (i) to guarantee a feasible force-closure
solution on the concave objects too; (ii) to study two-fingered
frictional force-closure planar grasps of deformable objects;
and (iii) to define differentiable force-closure error functions
for multi-fingered frictional force-closure grasps.

APPENDIX

In order to relate force-closure angle θ1 in (5) to the
control law u, we differentiate it with respect to time:

θ̇1 = k1
d
dt
(`T

12 n1 ) , k1 = − 1√
1 − (`T

12 n1 )
2

(29)

where `12 = (p2− p1)/‖p2− p1‖ , and where

d
dt
(`T

12 n1 ) = nT
1 M`12 (ṗ2 − ṗ1) + `T

12 Mn1 ṅ1 (30)

The matrices M`12 ∈ℜ2×2 and Mn1 ∈ℜ2×2 are as follows:

M`12 =
1

‖p2− p1‖
( I2 − `12 `

T
12 ) , Mn1 =

1
‖n1‖

( I2 − n1 nT
1 )

(31)
and where I2 is a 2×2 identity matrix. Using equations (29),
(30), and (31), we can write the velocity of the angle θ1 in
terms of the control law θ̇1 = A1 u where A1 ∈ ℜ1×2 is as
follows:

A1 =

[
k1 (`T

12 Mn1
∂ n1

∂ s1
) − k1 (nT

1 M`12 τ1) , k1 (nT
1 M`12 τ2)

]
(32)

where τ1 and τ2 are the tangent vectors of the contact points.
Similarly to the above equations, we can relate θ2 to the
control law as θ̇2 = A2 u where A2 ∈ℜ1×2 is as follows:

A2 =

[
k2 (nT

2 M`21 τ1) , k2 (`T
21 Mn2

∂ n2

∂ s2
) − k2 (nT

2 M`21 τ2)

]
(33)

k2 = − 1√
1 − (`T

21 n2 )
2
, ` 21 = (p1− p2)/‖p1− p2‖

(34)

M`21 =
1

‖p1− p2‖
( I2 − `21 `

T
21 ) , Mn2 =

1
‖n2‖

( I2 − n2 nT
2 )

(35)
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