

✉ erol.ozgur@sigma-clermont.fr | 🌐 <https://erol-papers.github.io>

## EMPLOYMENT

2018 - **Associate Professor**, SIGMA Clermont, Clermont-Ferrand, France  
 2015 - 18 **Assistant Professor**, Université Clermont Auvergne (UCA), Clermont-Ferrand, France  
 2012 - 15 **Postdoc**, Institut Français de Mécanique Avancée (IFMA), Clermont-Ferrand, France

## EDUCATION

2025 **HDR**, Université Clermont Auvergne (UCA), Clermont-Ferrand, France  
*The Visible, The Hidden and The Invisible* [pdf](#)  
 Jury: François Chaumette (Inria Rennes), Philippe Poignet (Université de Montpellier), Pierre Jannin (Université de Rennes1), Adrien Bartoli (UCA), Youcef Mezouar (CA-INP), François Berry (UCA)

2008 - 12 **PhD in Robotics and Vision**, Université Blaise Pascal (UBP), Clermont-Ferrand, France  
*From Lines to Dynamics of Parallel Robots* [pdf](#)  
 Supervisors: Nicolas Andreff and Co-supervisor: Philippe Martinet  
 Jury: Grigore GOGU (Institut Pascal/IFMA), Jean-Pierre MERLET (INRIA de Sophia-Antipolis), Jacques GANGLOFF (Université de Strasbourg), Sébastien BRIOT (IRCCyN)

2005 - 07 **MSc in Mechatronics**, Sabanci University (SU), Istanbul, Turkiye  
*Model Free Visual Servoing in Macro and Micro Domain Robotic Applications*  
 Supervisor : Mustafa Ünel GPA : 3.81/4.00

2001 - 05 **BSc in Computer Science**, Gebze Institute of Technology (GIT), Kocaeli, Turkiye  
*G-code Extraction for CNC Machines Using Visual Information* (3<sup>rd</sup> Rank), GPA : 3.22/4.00

## PROJECTS

2024 - 27 **REMAIN**, Interreg SUDOE project Role: Researcher  
*Robotic Remanufacturing of Deformable Industrial Products*

2022 - 26 **IMMORTALS**, ANR JCJC (386k€) Role: PI  
*Intraoperative Multimodal Real-time Tumour Augmentations for Laparoscopic Liver Surgery*

2021 - 24 **ACROBA**, H2020 European project Role: Researcher  
*AI-Driven Cognitive Robotic Platform for Agile Production Environments*

2019 - 23 **SoftManBot**, H2020 European project Role: Researcher  
*Advanced Robotic Technology for Handling Soft Materials in Manufacturing Sectors*

2018 - 21 **COMMANDIA**, Interreg SUDOE project Role: Researcher  
*Collaborative Robotic Mobile Manipulation of Deformable Objects in Industrial Applications*

2015 - 18 **FLEXABLE**, ERC StG project (HEPATAUG) Role: Researcher  
*Deformable Multiple-View Geometry and 3D Reconstruction, with Application to Mini-Invasive Surgery*

2012 - 15 **RoboTool/RobProd**, ANR - EquipEx Robotex Role: Researcher  
*Dexterous Object Manipulation with Collaborative Robots*

## TEACHING

2018 - **Lecturer**, SIGMA Clermont (192h/year)  
*Robotics; Perception for robotics; Systems modeling and control*

2015 - 18 **Lecturer**, Université Clermont Auvergne - IUT/Faculté de Médecine, (334h)  
*Analysis and descriptive statistics; Computer-assisted laparoscopy*

2013 - 14 **Lecturer**, Université Blaise Pascal, *Sensor-based control* (46h)

2005 - 07 **Teaching assistant**, Sabanci University, (20h/week)  
*C/C++; Systems modeling and control; Mathematics*

My research focuses on problems related to computer vision and vision-based control fields since 2005. Starting in 2015, I focus mainly on deformable shape perception and control problems, as well as their applications in computer-assisted laparoscopy (CAL) and robot-assisted laparoscopy (RAL). Below I list my significant achievements.

### On deformable object shape perception

The paper [15] developed one of the best performing shape-from-template algorithms in the state of the art. Due to the success of the algorithm, we developed an off-the-shelf open-source C++ library for the use of the research community and published in [5]. The first author M. Shetab-Bushehri was my PhD student that I supervised. The second author M. Aranda was a postdoctoral fellow that I collaborated.

### On deformable object shape control

In paper [27], we proposed a scheme which can control the full shape of an object in 3D space using only a monocular camera. The first author M. Aranda was a postdoc fellow that I collaborated.

In paper [4], we proposed a general unified tracking-and-servoing approach for controlling the shape of elastic deformable objects using robotic arms. There are two important contributions of this paper. First, it derives an analytical expression for the deformation Jacobian, which is not a trivial task, to control the object's shape. Second, the proposed approach can control the full shape of an elastic deformable object of any general form (linear, thin-shell, volumetric) in 3D space. The first author M. Shetab-Bushehri was my PhD student that I supervised.

### Computer-assisted liver laparoscopy

Between 2015 and 2018, I led a research team on computer-assisted liver laparoscopy in collaboration with surgeons from the University Hospital of Clermont-Ferrand. This collaboration resulted in 8 publications where I (co)authored and with an AR software called *Hepataug* for LLR guidance. *Hepataug* is still evolving and being tested in the operating rooms since then. During this research period, for instance, the following paper [30] proposed the first 3D-to-2D deformable registration solution for the liver laparoscopy in the de-facto operating room (OR) conditions. Its theoretical foundation was built on the paper [15]. The first author B. Koo was my postdoctoral fellow that I supervised.

*Hepataug* software allowed us (researchers and surgeons) to perform a case series study to evaluate the benefits of augmented reality (AR) guidance in LLR. The results are published in paper [8].

### Robot-assisted liver laparoscopy

I obtained a young researcher grant from the French National Research Agency to lead the IMMORTALLS project from 2022 to 2026 by forming my own team. The project's main objective is to enable automatic and real-time AR guidance in liver laparoscopy prior to tumor resection. The project relies on intraoperative laparoscopic ultrasound (LUS) imaging data to reveal the tumor and to track the tumor with a robotically-controlled LUS probe on the liver surface while the liver deforms and moves. The IMMORTALLS' core team includes two expert liver laparoscopy surgeons and research scientists. We proposed the first markerless and trackerless LUS probe pose estimation algorithm of the state-of-the-art in the paper [24]. The proposed LUS probe pose estimation algorithm can be used directly in the de-facto ORs. Building on this previous work, we recently proposed an AR guidance application for the de-facto OR conditions of liver laparoscopy based on the laparoscopic ultrasound (LUS) imaging data [3]. The first author M.M. Kalantari is my PhD student that I am supervising.

## Journal Articles

- [1] **K. Hanifati**, M. Alkhatib, **E. Ozgur**, E. Buc, B. Le Roy, H. Rante, Y. Mezouar, and A. Bartoli. "Hidden Tumor Visualization in Augmented Monocular Liver Laparoscopy". In: *IET Healthcare Technology Letters, special issue: selected papers from AE-CAI - Joint AE-CAI – CARE – OR 2.0 Workshop at MICCAI* (2025).
- [2] **E. Ozgur**, M. Alkhatib, Y. Mezouar, and A. Bartoli. "Reconstructing a Sphere and the Camera Focal Length from a Single View by Fitting Planes". In: *International Journal of Computer Vision (IJCV), special issue: selected papers from BMVC 2024* (accepted September 2025).
- [3] **M. M. Kalantari**, **E. Ozgur**, M. Alkhatib, E. Buc, B. Le Roy, R. Modrzejewski, Y. Mezouar, and A. Bartoli. "LARLUS: Laparoscopic Augmented Reality from Laparoscopic Ultrasound". In: *International Journal of Computer Assisted Radiology and Surgery (IJCARs-IPCAI)* (2024).
- [4] **M. Shetab-Bushehri**, **M. Aranda**, Y. Mezouar, and **E. Ozgur**. "Lattice-Based Shape Tracking and Servoing of Elastic Objects". In: *IEEE Transactions on Robotics (TRO)* 40 (2024), pp. 364–381.
- [5] **M. Shetab-Bushehri**, **M. Aranda**, **E. Ozgur**, Y. Mezouar, and A. Bartoli. "ROBUSfT: Robust Real-Time Shape-from-Template, a C++ Library". In: *Image and Vision Computing* 141 (2024).
- [6] **H. Abaunza**, R. Chandra, **E. Ozgur**, J.A. Corrales, and Y. Mezouar. "Kinematic screws and dual quaternion based motion controllers". In: *Control Engineering Practice* (2022).
- [7] **M. Shetab-Bushehri**, **M. Aranda**, Y. Mezouar, and **E. Ozgur**. "As-Rigid-As-Possible Shape Servoing". In: *IEEE Robotics and Automation Letters, (RAL)* (2022).
- [8] B. Le Roy, M. Abdallah, **Y. Espinel**, L. Calvet, B. Pereira, **E. Ozgur**, D. Pezet, E. Buc, and A. Bartoli. "A Case Series Study of Augmented Reality in Liver Laparoscopic Resection with a Deformable Preoperative Model". In: *Surgical Endoscopy* (2020).
- [9] **Y. Espinel**, **E. Ozgur**, B. Le Roy L. Calvet, E. Buc, and A. Bartoli. "Combining Visual Cues with Interactions for 3D-2D Registration in Liver Laparoscopy". In: *Annals of Biomedical Engineering* 48 (2020), pp. 1712–1727.
- [11] **E. Ozgur**, **B. Koo**, B. Le Roy, E. Buc, and A. Bartoli. "Preoperative Liver Registration for Augmented Monocular Laparoscopy using Backward-Forward Biomechanical Simulation". In: *International Journal of Computer Assisted Radiology and Surgery (IJCARs)* (2018).
- [12] G. Lopez-Nicolas, **E. Ozgur**, and Y. Mezouar. "Parking Objects by Pushing using Uncalibrated Visual Servoing". In: *Autonomous Robots* (2018).
- [13] **P. Phutane**, E. Buc, K. Poirot, **E. Ozgur**, D. Pezet, A. Bartoli, and B. Le Roy. "Preliminary Trial of Augmented Reality Performed on a Laparoscopic Left Hepatectomy". In: *Surgical Endoscopy* (2017).
- [14] **E. Ozgur**, G. Gogu, and Y. Mezouar. "A Study on Dexterous Grasps via Parallel Manipulation Analogy". In: *Journal of Intelligent and Robotic Systems* 87:1 (2017), pp. 3–14.
- [15] **E. Ozgur** and A. Bartoli. "Particle-SfT: a Provably-Convergent, Fast Shape-from-Template Algorithm". In: *International Journal of Computer Vision (IJCV)* 123:2 (2017), pp. 184–205.
- [16] S. Briot, V. Rosenzveig, P. Martinet, **E. Ozgur**, and N. Bouton. "Minimal Representation for the Control of Parallel Robots via Leg Observation Considering a Hidden Robot Model". In: *Mechanism and Machine Theory* 106 (2016), pp. 115–147.

- [17] **E. Ozgur** and Y. Mezouar. "Kinematic Modeling and Control of a Robot Arm using Unit Dual Quaternions". In: *Robotics and Autonomous Systems* 77 (2016), pp. 66–73.
- [18] **E. Ozgur**, N. Andreff, and P. Martinet. "Linear Dynamic Modeling of Parallel Kinematic Manipulators from Observable Kinematic Elements". In: *Mechanism and Machine Theory* 69 (2013), pp. 73–89.
- [19] M. Unel, O. Soldea, **E. Ozgur**, and A. Bassa. "3D Object Recognition using Invariants of 2D Projection Curves". In: *Pattern Analysis and Applications* 13-4 (2010), pp. 451–468.

## International Conference Papers

- [20] A. Samai, J. Thomas, M. Alkhatib, **E. Ozgur**, and Y. Mezouar. "Dual Quaternion based Compliant Movement Primitives for Deformable Object Manipulation". In: *IEEE International Conference on Robotics and Automation (ICRA)* (2026).
- [21] A. Khalife, M. Alkhatib, **E. Ozgur**, E. Buc, B. Le Roy, Y. Mezouar, and A. Bartoli. "Radiomics LUS Transformer for Liver Tumour Segmentation". In: *IEEE International Symposium on Biomedical Imaging (ISBI)* (2026).
- [22] M. M. Kalantari, **E. Ozgur**, M. Alkhatib, N. Rabbani, Y. Espinel, R. Modrzejewski, B. Le Roy, E. Buc, Y. Mezouar, and A. Bartoli. "Stronger Together: Registering Preoperative Imagery, LUS, and MIS Liver Images". In: *International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)* (2025).
- [23] **E. Ozgur**, M. Alkhatib, Y. Mezouar, and A. Bartoli. "Reconstructing Spheres by Fitting Planes". In: *British Machine Vision Conference (BMVC)* (2024).
- [24] M.M. Kalantari, **E. Ozgur**, M. Alkhatib, E. Buc, B. Le Roy, R. Modrzejewski, Y. Mezouar, and A. Bartoli. "Markerless Ultrasound Probe Pose Estimation in Mini-Invasive Surgery". In: *IEEE International Conference on Robotics and Automation (ICRA)* (2024).
- [25] R. Laezza, M. Shetab-Bushehri, **E. Ozgur**, Y. Mezouar, and Y. Karayiannidis. "Offline Reinforcement Learning for Shape Control of Deformable Linear Objects from Limited Real Data". In: *3rd Workshop on Representing and Manipulating Deformable Objects - IEEE International Conference on Robotics and Automation (ICRA)* (2023).
- [26] V. Giraud, M. Padrin, M. Shetab-Bushehri, C. Bouzgarrou, Y. Mezouar, and **E. Ozgur**. "Optimal Shape Servoing with Task-focused Convergence Constraints". In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2022).
- [27] M. Aranda, J. A. Corrales, Y. Mezouar, A. Bartoli, and **E. Ozgur**. "Monocular Visual Shape Tracking and Servoing for Isometrically Deforming Objects". In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2020).
- [28] Y. Espinel, **E. Ozgur**, L. Calvet, B. Le Roy, E. Buc, and A. Bartoli. "Combining Visual Cues and Interactions for 3D-2D Registration in Liver Laparoscopy". In: *International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)* (2019).
- [29] **E. Ozgur**, A. Lafont, and A. Bartoli. "Visualizing In-Organ Tumors in Augmented Monocular Laparoscopy". In: *IEEE International Symposium on Mixed and Augmented Reality (ISMAR)* (2019).
- [30] B. Koo, **E. Ozgur**, B. Le Roy, E. Buc, and A. Bartoli. "Deformable Registration of a Preoperative 3D Liver Volume to a Laparoscopy Image using Contour and Shading Cues". In: *International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)* (2017).

- [31] A. Bartoli and **E. Ozgur**. “A Perspective on Non-Isometric Shape-from-Template”. In: *IEEE International Symposium on Mixed and Augmented Reality (ISMAR)* (2016).
- [32] G. Lopez-Nicolas, **E. Ozgur**, and Y. Mezouar. “Image-Based Control of Two Mobile Robots for Object Pushing”. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2015).
- [33] **E. Ozgur**, G. Gogu, and Y. Mezouar. “Structural Synthesis of Dexterous Hands”. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2014).
- [34] **E. Ozgur**, R. Dahmouche, N. Andreff, and P. Martinet. “A Vision-Based Generic Dynamic Model of PKMs and its Experimental Validation on the Quattro Parallel Robot”. In: *IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)* (2014).
- [35] **E. Ozgur**, Y. Mezouar, and G. Gogu. “Control-Based Synthesis and Tracking of Grasping Points”. In: *European Control Conference (ECC)* (2014).
- [36] V. Rosenzveig, S. Briot, P. Martinet, **E. Ozgur**, and N. Bouton. “A Method for Simplifying the Analysis of Leg-Based Visual Servoing of Parallel Robots”. In: *IEEE International Conference on Robotics and Automation (ICRA)* (2014).
- [37] **E. Ozgur**, R. Dahmouche, N. Andreff, and P. Martinet. “High Speed Parallel Kinematic Manipulator State Estimation from Legs Observation”. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2013).
- [38] **E. Ozgur**, N. Bouton, N. Andreff, and P. Martinet. “Dynamic Control of the Quattro Robot by the Leg Edgels”. In: *IEEE International Conference on Robotics and Automation (ICRA)* (2011).
- [39] **E. Ozgur**, N. Andreff, and P. Martinet. “Vector-Based Dynamic Modeling and Control of the Quattro Parallel Robot by means of Leg Orientations”. In: *IEEE International Conference on Robotics and Automation (ICRA)* (2010).
- [40] **E. Ozgur**, N. Andreff, and P. Martinet. “On the Adequation of Dynamic Modeling and Control of Parallel Kinematic Manipulators”. In: *International Conference on Multibody System Dynamics (IMSD)* (2010).
- [41] **E. Ozgur**, M. Unel, H. Erdogan, and A. Ercil. “Evolving Implicit Polynomial Interfaces”. In: *British Machine Vision Conference (BMVC)* (2008).
- [42] **E. Ozgur**, B. Yilmaz, H. Karabalkan, H. Erdogan, and M. Unel. “Lip Segmentation Using Adaptive Color Space Training”. In: *International Conference on Auditory-Visual Speech Processing (AVSP)* (2008).
- [43] H. Bilen, M. A. Hocaoglu, **E. Ozgur**, and M. Unel. “A Comparative Study of Conventional Visual Servoing Schemes in Microsystem Applications”. In: *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (2007).
- [44] **E. Ozgur** and M. Unel. “Positioning and Trajectory Following Tasks in Microsystems Using Model Free Visual Servoing”. In: *IEEE International Conference on Industrial Electronics (IECON)* (2007).
- [45] **E. Ozgur** and M. Unel. “Image Based Visual Servoing Using Bitangent Points Applied to Planar Shape Alignment”. In: *IASTED International Conference on Robotics and Applications (RA)* (2007).
- [46] A. Malima, **E. Ozgur**, and M. Cetin. “A Fast Algorithm for Vision-Based Hand Gesture Recognition for Robot Control”. In: *IEEE Conference on Signal Processing and Communications Applications (SIU)* (2006).

## Ongoing PhD students

2025 - 28 Co-supervisor (30%) of **Bililign Amare Birhanu** (Ongoing)  
 Thesis: *Robotic Disassembly of Deformable Objects*  
 Supervision with Mohammad Alkhatib (40%) and Youcef Mezouar (30%)  
 REMAIN (Interreg SUDOE project) - MACCS/ISPR/IP/UCA

2025 - 28 Supervisor (40%) of **Malik Ammar Khodja** (Ongoing)  
 Thesis: *Robotic Exploration with Multimodal Sensing*  
 Supervision with Mohammad Alkhatib (30%) and Youcef Mezouar (30%)  
 IMMORTALLS (ANR JCJC project) - UCA

2025 - 28 Supervisor (35%) of **Kirana Hanifati** (Ongoing)  
 Thesis: *Augmented Reality and Vision-Language-Action for Human-Robot Collaboration*  
 Supervision with Mohammad Alkhatib (35%), Youcef Mezouar (30%)  
 IMMORTALLS (ANR JCJC project) - UCA

2024 - 27 Co-supervisor (40%) of **Ali Khalife** (Ongoing)  
 Thesis: *Multimodal Contact Servoing of a LUS Probe in Liver Laparoscopy*  
 Supervision with Mohammad Alkhatib (30%) and Youcef Mezouar (30%)  
 IMMORTALLS (ANR JCJC project) - Sigma Clermont (Clermont Auvergne INP)

2023 - 26 Co-supervisor (40%) of **Mahdi M. Kalantari** (Ongoing)  
 Thesis: *Real-time Tumor Augmentations in Liver Laparoscopy*  
 Supervision with Mohammad Alkhatib (30%) and Adrien Bartoli (30%)  
 IMMORTALLS (ANR JCJC project) - EnCoV/TGI/IP/UCA

## PhD Graduates

2020 - 24 Co-supervisor (40%) of **Victor Giraud** (now: software developer @Witekio) (Defended)  
 Thesis: *Shape Control of Deformable Objects and Its Application in an Industrial Use Case*  
 Supervision with Chedli Bouzgarrou (30%) and Youcef Mezouar (30%)  
 SoftManBot project - MACCS/ISPR/IP/UCA/FactoLab  
<https://theses.hal.science/tel-04573891>

2020 - 23 Co-supervisor (70%) of **M. Reza Shetab Bushehri** (now: postdoc @IMAGINE-LIRIS) (Defended)  
 Thesis: *Shape Tracking and Servoing of Deformable Objects*  
 Supervision with Youcef Mezouar (30%)  
 SoftManBot project - MACCS/ISPR/IP/UCA  
<https://theses.hal.science/tel-04393771>

## Postdoctoral Fellows

2024 - 25 Supervised (50%) **Mohammad Zohaib**  
 Subject: *Multi-modal Tumor Registrations and Augmentations in Liver Laparoscopy*  
 IMMORTALLS (ANR JCJC project) - Sigma Clermont (Clermont Auvergne INP)

2020 - 21 Supervised (50%) **Hernan Abaunza**  
 Subject: *Dexterous robotic manipulation*  
 SoftManBot (H2020 European project) - MACCS/ISPR/IP/UCA

2018 - 20 Supervised (50%) **Miguel Aranda**  
 Subject: *Shape Servoing using Monocular Vision*  
 COMMANDIA (Interreg SUDOE project) - MACCS/ISPR/IP/UCA

2016 - 18 Supervised (100%) **Bongjin Koo**  
 Subject: *3D to 2D Deformable Registration: Applied to Liver Laparoscopy*  
 FLEXABLE/HEPATAUG - (ERC StG project) - EnCoV/TGI/IP/UCA

## Master Students

I supervised more than 10 master students on problems related to multi-disciplinary fields.

*Medical robotics:* Omar El Hajji, Younes Bouisse, Aya Kedadi, Abderrahmane Ait Lamallam, Hubert Villeneuve, Juan Daniel Suarez Gonzalez;

*Robotics:* Berk Tepebag, Bastien Laurent, Hela Ben Said, Benjamin Arduouin;

*Medical imaging:* Ismaël Tansaoui, Imed Ghariani, Muhammad Zain Bashir, Yamid Espinel López, Priyanka Phutane.

Below I list my activities, which made contributions to the interest of the research and teaching communities.

#### RESEARCH-RELATED ACTIVITIES

**Instantiating Collaborations.** I started a collaboration between the MACCS (Modeling, Autonomy and Control in Complex Systems) team of the ISPR (Image, Systems of Perception and Robotics) axis and the EnCoV (Endoscopy and Computer Vision) team of the TGI (Image Guided Therapies) axis at the Institut Pascal to develop “robot-assisted laparoscopic surgery”. In this context, I gave a presentation at the “Interdisciplinary Day of Institut Pascal” in front of the “Scientific Advisory Board” to propose a number of research avenues that could be of interest to both teams.

**Writing Research Proposals.** I participated in writing of SoftManBot H2020 european project (accepted), ACROBA H2020 european project (accepted) and REMAIN Interreg SUDOE project (accepted), AIDEX Horizon europe project (submission is in evaluation). I wrote the IMMORTALLS ANR JCJC project (accepted) and the FullyALIVE ERC CoG 2024 project (interviewed at the 2<sup>nd</sup> step and graded *B*).

**Leading Projects.** I have been leading the IMMORTALLS ANR JCJC project since 2022. It is a four years project with a budget of 386.46 k€. I also lead the medical robotics research group inside the MACCS team of ISPR.

**Rewiewing Scientific Works.** I reviewed journal articles and international conferences papers in International Journal of Computer Vision (IJCV), IEEE Robotics and Automation Letters (RA-L), IET Computer Vision (IETCV), British Machine Vision Conference (BMVC), IEEE International Conference on Robotics and Automation (ICRA), IEEE/RSJ International Conference on Intelligent Robots (IROS).

**Co-organising scientific workshops.** I participated in the organisation of “Robotic manipulation of Deformable Objects: challenges in perception, planning and control for Soft Interaction (ROMADO-SI)” workshop in IROS 2022, Kyoto, Japan.

#### TEACHING-RELATED ACTIVITIES

I had experience in teaching mostly on automation, modelling, control, perception and robotics. I teach mostly to masters level students.

**Lecturing.** I had given so far the following courses: “Soft and Service Robotics” to Innomech Masters program students in English between 2018 and 2020 (full content creation - 28h); and “Automatique Monovariable” (AMONO) and “Automatique Multivariable” (AMULT) to freshmen between 2018 and 2022; and “Automatique Industrielle” to sophomores between 2018 and 2022 in SIGMA Clermont.

**Course Responsibility and Content Creation.** Since 2020, I am responsible for three new courses: (i) *Basic Robotics*, (ii) *Advanced Robotics* and (iii) *Special Topics on Perception and Robotics*. I fully built the contents of these three courses myself. Figure 1 overviews the details. I have been teaching these courses in English to students of Innovative Mechanisms and Robots (IMR) group of SIGMA Clermont. These three courses focus on theory and practice. I teach students how to develop and implement practical robotic applications. My motivation is to be able to attract and inspire the students to join in research or industrial related projects.

|                                                        | CM  | TD  | TP  |
|--------------------------------------------------------|-----|-----|-----|
| <b>S07 - Basic Robotics</b>                            | 6h  | 18h | 8h  |
| <b>S08 - Advanced Robotics</b>                         | 10h | 12h | 12h |
| <b>S09 - Special Topics on Perception and Robotics</b> | 12h | 12h | 8h  |

Figure 1: Summary of courses. \*Note that I have been exempted 50% from the teaching duties since 2022 to conduct better my ANR JCJC - IMMORTALLS project.

*Remark.* My teachings are motivated by my research. My courses remain up to date with the state-of-the-art.