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Abstract
Pushing is one of the strategies to perform robotic manipulation when the object is too large or too heavy. Motivated by
this, we address the problem of how to push an object on a plane to a target pose with two cooperating robots. The main
contribution is a new uncalibrated image-based control scheme that computes the required motion of the object to reach the
target pose. Then, as an application of this control scheme, we study the conditions that allow performing the task of pushing
the object with two robots. The setup consists of a fixed external uncalibrated camera looking at the workspace where the
object and the robots stand. The task is defined with a target image of the object in the desired pose. The proposed control
scheme computes the motion commands of the pusher robots and, as a result, they translate and rotate the object by imposing
non-holonomic velocity constraints. This yields smooth, continuous and efficient trajectories. The stability of the control
scheme is also proven. Experiments illustrate the performance of the control scheme.

Keywords Pushing · Manipulation · Visual servoing

1 Introduction

Manipulation of objects using robots is a classical problem
that has attracted the attention of the research community
during the last decades (Amor et al. 2014). Robotic systems
able to perform efficient and robust manipulation are of great
interest in many applications. In a pick and place application,
the end-effector of the robot grips the object with a clamp or
similar device to perform the task. However, this approach
can be useless if the object to be grasped is too large or too
heavy (Dogar and Srinivasa 2011). Different manipulation
strategies have been proposed in the literature to solve such
an application using pulling, pushing, throwing, vibrating,
etc. These strategies are denoted as non-prehensile or grasp-
less manipulation.

Here, we focus on the problem of moving an object by
pushing. There has been extensive research on the funda-
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mental mechanics of pushing (Mason 1986). However, this
is still a complex problem that raises different challenges
with respect to classical grasping such as planning a pushing
trajectory to reach the desired configuration or how to push
the object. Classical approaches in manipulation by pushing
are usually open-loopmethods. In general, these works focus
on how to define a sequence of pushes to remove the posi-
tion uncertainty of an object (Akella and Mason 1998; Brost
1986; Lynch 1992). A main problem is to identify a reli-
able sequence of pushes to achieve the overall pushing while
preventing the object from slipping on the contact (Li and
Payandeh 2007; Meriçli et al. 2015). However, the slipping
of the object on the contact surface of fences or fingers dur-
ing pushing has been also considered to define a sequence
of elementary operations to remove the pose uncertainties
of the objects (Peshkin and Sanderson 1988a, b). Due to the
open-loop nature of these approaches, failing to accurately
follow the planned sequence of pushes or the presence of
unaccounted perturbations might yield slip or rolling prob-
lems.

The works discussed in the previous paragraph proposed
open-loop schemes, and therefore there was no sensing
or feedback to compensate for the accumulating error.
Another approach considers measurements under closed-
loop schemes to improve the robustness against uncertainties
and perturbations. The measured data used for the control
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input can be for instance the angles of the push (Okawa and
Yokoyama 1992), tactile feedback (Lynch et al. 1992), or
vision (Gandolfo et al. 1991; Golkar et al. 2009; Salganicoff
et al. 1993). Just like these latter works, our approach is based
on visual feedback.Usually, thesemethods consist of twodif-
ferent parts. One is the perception system that estimates the
position of the object in the Euclidean space and the other is
devoted to performing the pushing actions. In contrast, our
approach is an image-based control scheme defined directly
in terms of uncalibrated image information and performed
without computing the 3-D pose of the object.

The related work on manipulation by pushing can be clas-
sified depending on the number of contact types used in
pushing. For example, there canbe a single point contact (Sal-
ganicoff et al. 1993), two point contacts (Balorda and Bajd
1994; Golkar et al. 2009), line contact (Akella and Mason
1999) or multiple point contacts (Rus et al. 1995; Sudsang
et al. 2002). Our proposal fits in the category of two point
contacts push. We propose to use two robots which push the
object coordinately but they are controlled independently in
a closed-loop manner.

Vision sensors have been extensively used in robotics
(Caron et al. 2013; Chaumette and Hutchinson 2006; Chen
et al. 2009; Chesi and Hashimoto 2010; Jara et al. 2014;
Nammoto et al. 2013), because of the versatility, low cost
and rich information they provide. A main advantage of cal-
ibrated camera-based visual servoing is that classical control
theory can be directly applied. The drawback is that they
depend critically on the accuracy of the calibration. A fail-
ure can occur because of the initial calibration errors, aging
of components, changes of environmental conditions, main-
tenance work, etc. Uncalibrated visual servoing approaches
are usually simple, computationally efficient and accurate,
but they bring a number of challenges such as local minima,
singularities or contorted trajectories in the Cartesian space,
as well as different practical issues (Ramirez and Jägersand
2016).

A complex problem often addressed in visual servoing is
the estimation of the Jacobian matrix in uncalibrated setups
(Liang et al. 2015; Piepmeier et al. 2004; Shademan and
Jägersand 2012). In Malis (2004) a visual servoing scheme
which is invariant to changes in camera-intrinsic parameters
is presented. The basic idea in Malis (2004) is to use projec-
tive invariance to build the control task from only measured
image features. The idea of designing a mapping from the
control task to a different space than the image has been used
profusely (Adachi and Sato 2004; Cai et al. 2016; Li et al.
2014). Here, a novelty of the approach presented in this paper
resides in the control law defined directly in terms of image
information and the procedure to show the stability analysis,
which is a difficult issue in image-based approaches.

An important limitation in uncalibrated visual servoing
arises when the initial pose discrepancy is large and the fea-

ture points may leave the camera’s field of view. An example
solving this limitation by planning trajectories in the image
space using uncalibrated stereo cameras is presented in Park
and Chung (2003). Moreover, standard uncalibrated visual
servoing methods cannot be applied directly to the problem
considered here because of the required constrainedmotions.
Therefore, specific control schemes, as the one we propose,
need to be designed taking into account the different limita-
tions of the actuators.

Recently, in López-Nicolás et al. (2015) we proposed a
vision-based approach to push an object to a target pose with
twomobile robots. This approachunifies all the advantages of
previous related works such as being sensor-based (vision),
closed-loop, stability proven, applicable to non-polygonal
objects, performing smooth, continuous and efficient tra-
jectories, etc., and beyond all these it is an uncalibrated
approach. This approach was validated by simulation. How-
ever, that approach required a rectification step of the input
images to remove the projective distortion and recover simi-
larity properties in order to prove the stability of the control
scheme.

Here, in this paper, we improve the solution given
in López-Nicolás et al. (2015) (1) by eliminating this rec-
tification step of the input images and thus making it fully
image-based, (2) by proposing a method for the selection
of the pushing points on the object, (3) by adapting it for
bothmobile robots andmanipulators (e.g., a dual-arm robotic
platform, see Fig. 1), (4) by proving stability of the pro-
posed solution, and (5) by validating it experimentally. In
the pushing task, we considered that each pusher robot inter-
acts with the object through frictional point contacts under
the quasi-staticmotion assumption,which is usually assumed

Fig. 1 Kuka dual-arm manipulator platform pushing a box shaped
object. One of the top cameras observing the scene is used in an uncal-
ibrated eye-to-hand configuration for the control
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in the literature (Lynch 1992), although there are works that
take into account the dynamics of the object during pushing
(Kopicki et al. 2016; Rezzoug and Gorce 1999). We applied
the pushing forcewith an angle relative to the surface so that it
was inside the friction cone and no slip occurred during the
pushing if some conditions are met (Gandolfo et al. 1991;
Okawa and Yokoyama 1992). This allowed us to be able to
push the object like a non-holonomic vehicle actuated only
for forward motion.

Consequentlyweexploited thewell-studied contact physics
and the non-holonomic vehicle kinematics theories to model
and control the pushing task. Moreover, we performed the
pushing task only with the image information obtained from
an uncalibrated camera looking at the workspace from an
arbitrary pose. Here, we consider a conventional camera that
can be modeled as a pinhole camera. This allows us to avoid
both intrinsic and extrinsic calibration of the camera. The
pinhole camera model cannot be assumed if, for example,
there is an important image distortion due to a wide angle
lens. In that case, an initial calibration of the intrinsic cam-
era parameters to unwarp the distortion would be needed.
This methodology simplified the pushing task from a prac-
tical point of view and increased the system robustness. We
made the following assumptions as in Lynch (1992) for the
pushing task:

– All motions and forces are on an obstacle-free plane
which is normal to the gravity vector.

– Frictional forces conform toCoulomb’sLaw (Lynch et al.
1992).

– The friction is uniformbetween the object and the support
plane. This means that the center of friction of the pushed
object is the point on the support plane beneath the center
of mass of the pushed object (MacMillan 1936).

– Motions are slow enough that inertial forces are negligi-
ble, i.e., quasi-static motion assumption. This means that
the pushing forces and the frictional forces balance each
other.

Shortly, the proposed solution contributes on the existing
literature in threeways: (1) It performs pushingmanipulation
with an uncalibrated image-based visual servoing scheme.
This does not need any metric information, calibration, nor
rectification. (2) It yields smooth, continuous, and efficient
trajectories by imposing non-holonomic velocity constraints
on the pushed object. (3) Finally, it proves the local and global
stability of the uncalibrated image-based control law.

The rest of this paper goes on as follows: Sect. 2 explains
how to actuate an object by pushing with two frictional point
contacts; Sect. 3 develops the control law based on non-
holonomic motion kinematics for an object with forward
motion constraints; Sect. 4 discusses how to compute an opti-
mal motion direction for the pushed object; Sect. 5 proposes

Fig. 2 (Left) Point contact on the object boundary with Coulomb fric-
tion μ . (Right) An applied force F pointing inside the friction cone

an algorithm to find two pushing points on the object; Sect. 6
presents the experimental results; and finally Sect. 7 con-
cludes the paper.

2 Pushing with two frictional point contacts

Here first, we explain the physics of a frictional point contact,
then we show how to actuate an object by pushing with two
frictional point contacts like a non-holonomic vehicle.

We choose a point contact with friction when friction
exists between the fingertip and the object. In a point contact
with Coulomb friction model, we can apply a force F to an
object in any direction as long as it is oriented within the
friction-cone. The apex of the friction-cone coincides with
the contact point, and the cone axis is alignedwith the inward
object boundary normal n. The cone aperture is defined by
the static friction coefficient μ = tan βmax > 0, see Fig. 2.

Exploiting the above frictional point contact physics, we
nowwould like tomove an object like a non-holonomic vehi-
cle by pushing as it is illustrated in Fig. 3. In order to do so,
we should push the object from points located on the left and
right sides of its mass center G, and each contact friction
cone should allow to generate a force oriented towards the
desired motion direction of the object. Afterwards, we know
that from Newton’s second law, if the mass of the object is
constant, then the linear and angular acceleration of the object
are directly proportional to the global force and torque act-
ing on the object and they are in the direction of this force
and torque. Thus, up to certain conditions and limitations
that will be studied in the following sections, it is possible to
move the object like a non-holonomic vehicle by pushing.

This approach is considerably different than other classi-
cal solutions such as the one described in Lynch and Mason
(1996), Mason (2001). In Mason (2001), a single line con-
tact is used to push the object along a previously planned
trajectory in an open-loop manner. That trajectory is defined
through a method for finding the instantaneous centers of
rotation that will produce stable pushes. Failing to accurately
follow this trajectory or the presence of unaccounted pertur-
bations might yield slip or rolling problems. In our proposal,
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Fig. 3 Moving an object like a non-holonomic vehicle by pushing

Fig. 4 Geometry of the objectwith two pushing points. This can be con-
sidered as a pseudo non-holonomic vehicle with only forward motion

we use two robots which push the object coordinately but
are controlled independently in a closed-loop manner. As we
explain in the next sections, we first constrain the control
commands with appropriate conditions on the control gains
to only produce forward motions. Then, each robot pushes in
the selected contact point for which possible slip and rolling
are compensated by the image-based closed-loop control.

We remark that the possible complex shape of the object
forms a non-symmetric non-holonomic vehicle geometry
(see Fig. 4), and unlike a real non-holonomic vehicle, the
object can move only forward (and not backward). Given
the desired non-holonomic velocity vector (v, ω) of a non-
symmetric object, we can compute the velocities of the
pushing points as follows:

PL = G + rL (1)

vL = Ġ + w × rL (2)

PR = G + rR (3)

vR = Ġ + w × rR (4)

where rL = [rL x , rL y, 0]T and rR = [rRx , rR y, 0]T are the
vectors from the mass center to the left and right pushing
points PL and PR ; vL and vR are the velocities of the push-
ing points; Ġ = v y is the velocity of the mass center with
the unit vector y = [0, 1, 0]T of the fixed motion direction
and the linear speed v; andw = ω z is the rotational velocity
vector with the rotational axis z = [0, 0, 1]T and the angu-
lar speed ω. We can simplify and rewrite the velocities of

the pushing points for 2D planar space from (2) and (4) as
below:

vL =
[
0 −rL y
1 rL x

] [
v

ω

]

vR =
[
0 −rR y
1 rRx

] [
v

ω

]
(5)

3 Forward non-holonomic motion

In this section, we develop the kinematic model, the control
law, and the necessary conditions of anobjectwhichperforms
only forward non-holonomic motion.

3.1 Kinematics

Let us define an object frame fixed to the object and defined
by y and G (See Fig. 5). We also denote the object frame in
the desired position, fixed with respect to the world frame,
with y∗ and G∗. Let the state vector of the object in polar
coordinates, between the current and target locations, be
x = [ ρ, α, φ ]T in the real world plane πW (see Figs. 5,
6). Here ρ is the distance of the object to the desired posi-
tion, φ is the alignment error of the object with respect to the
desired orientation, and α is the alignment error of the fixed
motion direction of the object towards the desired position.
The object state vector is thus defined as a relative alignment
error with respect to the target configuration:

ρ = ‖G∗ − G ‖
α = atan2 ( (u × y)z ,uT y )

φ = atan2 ( (y∗ × y)z , y∗T y ) (6)

where u = (G∗ − G ) / ρ, and where (·)z represents the z-
axis component of an associated vector. Afterwards, let the

Fig. 5 State variables of the object with respect to a target pose. The
object frame attached to the object is defined by y and G. The same
frame with the object in the target location is denoted with y∗ and G∗,
being this target frame fixed in the world frame. The speed v is in the
direction of y and ω is positive counter-clockwise
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Fig. 6 World plane showing its coordinate frame. The image plane of
the camera aiming at the scene is represented on top left. The map
between points in the world plane πW and their image in πI is a homog-
raphy

desired motion of the object be the linear speed v and the
angular speed ω, then the non-holonomic kinematics of the
object can be written as follows (López-Nicolás and Sagüés
2011):

⎡
⎣ ρ̇

α̇

φ̇

⎤
⎦ =

⎡
⎣− cosα 0

1
ρ
sin α 1

0 1

⎤
⎦ [

v

ω

]
(7)

This previous kinematics will be used to model the object
when pushed. However, note that the idea is not to assume
that the system behaves under thismodel but to impose, using
adequate constraints presented in the following sections, this
behavior to the system.

3.2 Relating image plane to Euclidean plane

We use a conventional uncalibrated camera looking at the
workspace. This camera is assumed to comply with the pin-
holemodel. Then, neither intrinsic nor extrinsic calibration is
required. The input of the control law consists of the images
acquired with the camera and a prior target image with the
object in the desired pose. Next we analyze the relation of the
state variables between the images and the real world. The
goal is to show that the state variables computed from the
image plane are related to the corresponding variables in the
real world with a bounded matrix T. This property is used in
the subsequent analysis to establish the stability conditions
on the control scheme.

First, let us formulate the following assumption regard-
ing the system configuration: The relative position between
the camera and the real world plane where the motion of the
object occurs is not in a degenerate configuration. In partic-
ular, the camera center does not lie in the world plane. More
specifically, we assume that the camera is above the world
plane pointing to the workspace where the task is performed.

Proposition 1 The relation between the measured state vari-
ables computed from the image plane πI and the physical

world plane πW can be written down as x̄ = T x:

⎡
⎣ ρ̄

ᾱ

φ̄

⎤
⎦

︸ ︷︷ ︸
x̄

=
⎡
⎣ Tρ 0 0

0 Tα 0
T0 0 Tφ

⎤
⎦

︸ ︷︷ ︸
T

⎡
⎣ρ

α

φ

⎤
⎦

︸ ︷︷ ︸
x

(8)

where x̄ ∈ πI is the vector of measured state variables from
the input image, and Tρ(x), Tα(x), Tφ(x)and T0(x)are scalar
functions with lower and upper bounds as follows:

0 < Tmin
ρ ≤ Tρ ≤ Tmax

ρ (9)

0 < Tmin
α ≤ Tα ≤ Tmax

α (10)

0 < Tmin
φ ≤ Tφ ≤ Tmax

φ (11)

Tmin
0 ≤ T0 ≤ Tmax

0 (12)

Proof Let us define two points (p1, p2) on the physical world
plane πW and (p̄1, p̄2) their image projections. We choose
the world coordinate frame with Z-axis orthogonal to the
physical world plane and origin in this plane as shown in
Fig. 6. Then, the mapping between the points on the X -Y
world plane and the image plane is a homographyH such as

p̄1 = λ1Hp1 (13)

p̄2 = λ2Hp2 (14)

with finite scalar coefficients λ1, λ2 �= 0. We also define
p = p2 − p1, p̄ = p̄2 − p̄1. By definition we have ρ̄ = ||p̄||
and ρ = ||p||. Then, we can write function Tρ as follows

Tρ = ||p̄||
||p|| = ||H (λ2 p2 − λ1 p1)||

||p2 − p1|| . (15)

Without loss of generality we can choose p2 = 0, and then

Tρ = ||λ1Hp1||
||p1|| = |λ1| ||Hp1||

||p1|| . (16)

Denoting λmax(H) and λmin(H) the maximum and minimum
eigenvalues of the homography matrix H we can write:

Tmin
ρ = |λ1| λmin(H) ≤ Tρ ≤ |λ1| λmax(H) = Tmax

ρ . (17)

Note that if p1 = p2 we have ρ = 0 ⇔ ρ̄ = 0, otherwise
ρ > 0 ⇔ ρ̄ > 0. In the former singular case, taking limits
to Tρ produces |λ1| ||H||. Therefore, bounds of Tρ in (9) can
always be defined as in Eq. (17).

Regarding Tα = ᾱ/α, note that a planar projective trans-
formation such as the homography H is known to preserve
collinearity. Therefore, ᾱ = 0 ⇔ α = 0 (or alternatively
ᾱ = ±π ⇔ α = ±π ). As a consequence we have that
the angle between two intersecting lines in the real world
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and the projection of this angle to the image plane have
the same sign, i.e. α ∈ (0, π) ⇔ ᾱ ∈ (0, π) or else
α ∈ (−π, 0) ⇔ ᾱ ∈ (−π, 0). We can write function Tα

as follows

Tα = ᾱ

α
= atan2((ū × ȳ)z , ūT ȳ)

atan2((u × y)z ,uT y)
, (18)

which is clearly positive and bounded for any α �= 0 (i.e. u
and y not collinear). In the singular case of u and y collinear,
we have small values for α and ᾱ. Therefore we consider
α � tan α and ᾱ � tan ᾱ. Since α and ᾱ have same sign we
can write

Tα = |ᾱ|
|α| � ‖ū × ȳ‖ ‖uT y‖

‖u × y‖ ‖ūT ȳ‖
= ‖λu Hu × λy Hy‖ ‖uT y‖

‖u × y‖ ‖λu uT HT Hy λy‖

= ‖Hu × Hy‖ ‖uT y‖
‖u × y‖‖uTHTHy‖ = |H|‖H−T

(u × y)‖‖uT y‖
‖u × y‖ ‖uT HT Hy‖ ,

(19)

with finite scalar coefficients λu, λy �= 0 and |H| the deter-
minant of matrix H. Properties of quadratic forms lead to

|H|λmin(H−T
)

λ2max(H)
≤ |H|‖H−T

(u × y)‖‖uT y‖
‖u × y‖ ‖uTHTHy‖

≤ |H|λmax(H−T
)

λ2min(H)
. (20)

Therefore, bounds of Tα in (10) can always be defined as in
Eq. (20).

The case of (φ, φ̄) in (8) is different than (α, ᾱ) because
φ = 0 (or ±π ) does not imply φ̄ = 0 (or ±π ). Therefore
φ = 0 and φ̄ �= 0 is a singular case. It appears when two lines
are parallel (y×y∗ = 0) but not collinear (u×y∗ �= 0) in the
world plane. This is a consequence of perspective projection
which makes parallel lines intersect in the image. In (8),
multiplying φ, when φ = 0, only with a positive constant
Tφ cannot produce φ̄ �= 0. We handle this by adding some
contribution from ρ exploiting that in the singular case we
have ρ �= 0 (since φ = 0 and ρ = 0 implies φ̄ = 0):

φ̄ = T0 ρ + Tφ φ , (21)

where we define functions Tφ and T0 as follows

Tφ =
⎧⎨
⎩

atan2((ȳ∗×ȳ)z ,ȳ∗T ȳ)
atan2((y∗×y)z ,y∗T y) , i f (φ �= 0)

|H| ‖H−T ‖
λ2min(H)

, i f (φ = 0)
(22)

T0 =
{
atan2((ȳ∗ × ȳ)z , ȳ∗T ȳ)/ρ , i f (φ = 0) ∧ (φ̄ �= 0)
0 , i f (φ �= 0) ∨ ((φ = 0) ∧ (φ̄ = 0))

(23)

By defining arbitrarily small thresholds φ0, φ̄0 ∈ �+ we can
obtain the following bounds: Tmax

φ = π /φ0 and Tmin
φ =

φ̄0 / π . For the singular case, the definitions of Tφ and T0
given in (22) and (23) allow to express correctly the mapping
betweenφ and φ̄. For the non-singular case,φ behaves similar
to α, therefore it is bounded. Then, bounds for Tφ and T0 can
be found from (22) and (23). �


3.3 Control law

In this section we describe the proposed control law,
which is inspired from López-Nicolás and Sagüés (2011).
In López-Nicolás and Sagüés (2011), the position-based con-
trol scheme is based on Euclidean space information, and it
is applied to a non-holonomic mobile robot equipped with a
calibrated onboard camera. Here, we adapt this control law to
be computed from uncalibrated image information, and then
apply it to a system where an object is pushed on a plane and
observed by an external uncalibrated camera looking at the
scene. We define the object’s desired motion with this new
control law for this new system (i.e., object manipulation by
pushing) from the computed state variables as follows:

v = kρ ρ̄ cos ᾱ (24)

ω = kφ φ̄ − kα ᾱ (25)

where kρ , kα , and kφ are positive constant control gains.

Theorem 1 (Local exponential stability) If the chosen con-
trol gains satisfy the following condition:

Tmin
α kα − (Tmax

φ kφ + Tmax
ρ kρ) > 0 (26)

then the control law (24-25) is locally exponentially stable.

Proof Using (8), (24) and (25) in (7), we can obtain the
closed-loop system described as below:

ρ̇ = −kρ Tρ ρ cos(Tα α) cosα

α̇ = kφ Tφ φ + kφ T0 ρ − kα Tα α + kρ Tρ cos(Tα α) sin α

φ̇ = kφ Tφ φ + kφ T0 ρ − kα Tα α (27)

The first-order Taylor series approximation of this closed-
loop system (27) around the equilibrium state (x = 0) gives
the following linearized system ẋ ≈ Ax:

⎡
⎣ ρ̇

α̇

φ̇

⎤
⎦ ≈

⎡
⎣−kρTρ 0 0

kφT0 kρTρ − kαTα kφ Tφ

kφT0 −kα Tα kφ Tφ

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣ρ

α

φ

⎤
⎦ (28)

This system is locally exponentially stable if and only if the
eigenvalues of the linearized systemmatrix are negative. This
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yields to the following condition:

Tα kα − Tφ kφ − Tρ kρ > 0 (29)

The worst case is given then by (26), and satisfying (26) is
sufficient for local exponential stability. �

Theorem 2 (Global asymptotical stability) The control law
(24-25), with gains satisfying (26), is globally asymptotically
stable if the following condition also holds:

1 > 4 kρ Tmax
ρ λmax(P) , (30)

being λmax(P) the maximum eigenvalue of P, where P is:

P = 1

2 Tφ kφ Tρ kρ N

⎡
⎣ p11 p12 p13

p21 p22 p23
p31 p32 p33

⎤
⎦

wi th N = (Tαkα − Tφkφ − Tρkρ) , (31)

p11 =
(
(T0kφ)2(Tαkα + Tφkφ) + TαkαTφkφN

)
/ (Tαkα)

p12 = p21 = T0kφ

(
TφkφTρkρ + (Tαkα − Tφkφ)2

)
/ (Tαkα)

p13 = p31 = T0kφ

(
TαkαTρkρ − (Tαkα − Tφkφ)2

)
/ (Tαkα)

p22 = (Tαkα)2 + (Tφkφ)2 + TφkφTρkρ

p23 = p32 = −(Tαkα)2 − (Tφkφ)2 + TαkαTρkρ

p33 = (Tαkα − Tρkρ)2 + (Tφkφ)2 + TφkφTρkρ (32)

Proof We define the candidate Lyapunov function as:

V (x) = xT P x (33)

where P is a symmetric positive definite matrix to be found.
We write the system dynamics (27) in the following form:

ẋ = Ax + f(x) (34)

with A defined in (28) and f(x) as below:

f(x) = kρ Tρ

⎡
⎣ρ − ρ cosα cos(Tα α)

sin α cos(Tα α) − α

0

⎤
⎦ (35)

Notice that the matrixA is Hurwitz given that constraint (26)
holds. The derivative of (33) yields:

V̇ = ẋT P x + xT P ẋ

= xT (AT P + PA) x + fT P x + xT P f

= −xT Qx + 2 xT P f (36)

where AT P + PA = −Q and Q = QT > 0. Choosing
Q = I and solving forP = PT , we obtainP as defined in (31).
It can be shown that P is positive definite if constraint (29)

holds by checking that all leading principal minors of P are
positive. Now,wework out (36) with the goal of showing that
V̇ < 0. It can be demonstrated that, there exists a constant
M ∈ � in such a way that:

||f(x)|| < M ||x|| . (37)

In particular, the norms of the vectors involved in the inequal-
ity (37) results in:

k2ρ T 2
ρ

(
ρ2(1− cosα cos(Tα α))2+(sin α cos(Tα α) − α)2

)

≤ (2 kρ Tρ ρ)2 + (2α)2 < M2 (ρ2 + α2 + φ2) (38)

which is true if

M2 > (2 kρ Tρ)2 (39)

Therefore, we choose Mmax > (2 kρ Tmax
ρ ) in such a way

that (37) holds. Then, we can develop (36) as follows:

V̇ ≤ −xT Qx + 2 ||P x|| M ||x||
≤ −λmin(Q)||x||2 + 2M λmax(P)||x||2
= − (λmin(Q) − 2Mλmax(P)) ||x||2 (40)

Therefore, V̇ < 0 if the next inequality holds:

λmin(Q) > 2Mmax λmax(P) (41)

where λmin(Q) = 1, which yields (30). Therefore the control
law is globally asymptotically stable if (26) and (30) hold. �


Finally, the input velocities of the pushers vL and vR from
the desired motion of the object—the speeds v and ω in (24)
and (25)—are computed using (5).

The condition of local stability (29) can be interpreted
intuitively by noticing that it imposes that Tα kα must be
greater than the sum of Tφ kφ and Tρ kρ . This means that
the convergence of α must be faster than ρ and φ ensuring
alignment of the system with the desired direction of motion
and following it. This avoids undesirable behaviors such as
spiral trajectories around the target position. Global stability
also takes into account the non-linear term f(x) with con-
dition (30), which guarantees that non-linear terms (35) are
bounded by the convergence rate of A (34), so the system
copes with non-holonomic motion constraints guaranteeing
global convergence.

Remark 1 Wewould like to remark that these speeds are nor-
mally for non-holonomic vehicles and they can move the
vehicles forward and backward. In case of a pushed object,
we should avoid backwardmotion sincewe cannot pull. Next
subsection emphasizes the required conditions for forward
motion maneuvers only.
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3.4 Forwardmotion conditions

The first condition that should hold for the state variables to
guarantee the forward motion (v ≥ 0) is as below:

| ᾱ | ≤ π/2 and | ψ̄ | ≤ π/2 (42)

where ψ̄ is the image projection of ψ (see Fig. 5) and can
be defined as ψ̄ = φ̄ − ᾱ. Constraint (42) avoids cusps in
the trajectory of the object which cause backward motion.
This constraint is guaranteed by the proper choice of the
motion direction y of the object. Next section explains how
to compute the motion direction of the object.

The second condition that we should also impose while
pushing the object is to limit the angular speed of the object:

|ω| ≤ v / r (43)

where r is the distance between a pushing point and the mass
center of the object (see Fig. 4). This distance r is computed
as follows:

r =
⎧⎨
⎩

‖rL‖ i f ω > 0
‖rR‖ i f ω < 0

∞ i f ω = 0
(44)

Constraint (43) avoids velocities of the pushing points vL

and vR to have negative values for the motion axis y (5).
This prevents the control scheme from asking for backward
motions by constraining the rotational motion speed ω with
respect to the forward motion speed v. Not imposing this
constraint will result in non-viable motions. Another com-
plex issue to deal with is to guarantee the non-slip condition
and continuous contact of the pushers with the object, since
constraint (43) is a necessary condition but not sufficient.
Thus, in our approach each robot pushes in the selected con-
tact point for which possible slip and rolling are compensated
by the image-based closed-loop control. The procedure to
deal with this issue is presented in Sect. 6.1 for the case of
mobile robots and in Sect. 6.2 for the case of the dual arm
manipulator.

The previous condition (43) is required to limit the angu-
lar speed of the object. In order to guarantee that the control
commands do not break this condition, we seek for the rela-
tions of the control gains that impose this constraint. To do
so, next proposition elaborates on (43) using the proposed
control law (24) and (25).

Proposition 2 Constraint |ω| ≤ v/r (43) is satisfied if the
following two conditions hold:

π

2

∣∣ 2 kφ − kα

∣∣ ≤ εα

(
Tmin

ρ kρ ρ̄+
r̄

− kα

)
(45)

2
(
kρ Tmin

ρ + kφ Tmin
φ

)
> kα Tmax

α (46)

where ρ̄+ > 0; where r̄ = Tρ r is the distance between
the mass center and the corresponding pushing point of the
object in the plane πI with Tρ defined as in (8); and where εα

is an arbitrary small positive angle (hence sin(εα) ≈ εα).

Proof Next, we study the conditions when constraint (43) is
violated. The worst cases for this constraint can be divided
according the value of ρ̄ into ρ̄ = ρ̄+ > 0 and ρ̄ = 0.
Case ρ̄ = ρ̄+ > 0.

We can rewrite the angular speed constraint |ω| ≤ v/r
using (8), (24) and (25) as follows:

∣∣kφ φ̄ − kα ᾱ
∣∣ ≤ Tρ kρ ρ̄+ cos ᾱ

r̄
, (47)

where we consider the case of ρ̄ = ρ̄+ any positive value.
Then, the worst case which violates the above condition hap-
pens for ᾱ = ±π/2 , when the motion direction of the
object is orthogonal to the direction towards the target. In
this case, v = 0 and the constraint |ω| ≤ v/r is violated.
This is a singular case that can be avoided in practice by, for
example, applying the proposed algorithm for motion direc-
tion selection (see Sect. 4). We thus set the worst case as
ᾱ = ±π/2 ∓ εα where εα is an arbitrary small positive
angle. Addition of ±εα to ᾱ also keeps v > 0.

Regarding φ̄, it can be deduced that the worst case corre-
sponds to φ̄ = ±π . This happens when the motion direction
of the object is oriented backwardwith respect to desired con-
figuration. Note that, although φ̄ = ∓π could seem a worse
case, it cannot happen with ᾱ = ±π/2 at the same time
given that we express all angles in [−π , π ]. For instance,
if ᾱ = π/2 and given that by definition ᾱ = φ̄ − ψ̄ , we
have that φ̄ = −π leads to ψ̄ = −3π/2 whereas the cor-
rect expression of the angles would be ψ̄ = π/2 resulting in
φ̄ = π .

Finally, (47) can be rewritten for the worst case values of
ᾱ, φ̄ and Tρ as (45). Note that condition (45) relates gains
kφ and kα , which are directly related with ω, with gain kρ ,
which is related with v. Thus, this condition is constraining
ω with respect v to avoid larger rotations at the beginning of
the motion.
Case ρ̄ = 0.

Condition (45) allows tuning the control gains to avoid
control law saturation when v > 0. Nevertheless, it does not
guarantee |ω| ≤ v/r at the end of the motion period, when
ρ̄ → 0 and therefore v → 0. In that case, we must guarantee
that the convergence rate of ω is higher than v. This case
appears when the system is getting closer to the equilibrium
state. Therefore, we can consider here the first-order Taylor
series approximation of the closed-loop system given in (28).
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The eigenvalues of this system are as follows:

λρ = −kρ Tρ , λα,φ = −N ∓ √
(N )2 − 4 kρ Tρ kφ Tφ

2
(48)

with N defined in (31). Since the convergence rates of the
state variables are given by their eigenvalues:

ρ̄(t) = ρ̄0 e
(λρ t) thus v ≈ kρ ρ̄0 e

(λρ t) , (49)

we derive the conditions for (48) such that |λρ | is the smallest
eigenvalue. In particular, we look for condition:

|λα| � |λφ | > |λρ | . (50)

We can deduce from (48) and (50) the following expression

2 (kρ Tρ + kφ Tφ) > kα Tα , (51)

from which the worst case leads to (46). The intuition on
(46) is that the pushed object should approximate the desired
position with the target orientation. In particular, note that
whereas (26) imposes a higher value for kα over kρ and kφ ,
condition (46) imposes that kα should be below a combina-
tion of kρ and kφ . This is to avoid large corrections on the
orientation from the control lawwith low linear speed, which
would be impractical due to the angular speed limitation in
the pushing of the object.

We can thus sustain the constraint of the angular speed
given in (43) by satisfying (45) and (46). �


3.5 Illustrative scenario on bounds and stability

Wenow illustrate with a numerical example the stability con-
ditions. In this scenario, Proposition 1 and Theorems 1, 2
are used to validate convergence to the solution. The object
is placed in position (x, y, z) = (−500, 1000, 0) mm with
orientation on the plane ofφ = 45◦ . The target pose is the ori-
gin. The camera has a focal length of 6mm and it is located in
position (− 2000, 1000, 2000)mmwith orientation angles of
(− 20◦,− 10◦, 0◦). The size of the acquired images is 640×
640 pixels. The control gains have been set as follows: kρ =
0.2, kα = 0.7, and kφ = 0.4. The simulated results using
the proposed control law (24–25) give the following bounds
in (9–12): (Tmin

ρ , Tmax
ρ ) = (0.223, 0.247), (Tmin

α , Tmax
α ) =

(0.885, 1.070), (Tmin
φ , Tmax

φ ) = (0.888, 1.043), (Tmin
0 ,

Tmax
0 ) = (2.546, 5.193), and λmax(P) = 0.733. It can be

checked that the control parameters and these values hold
the stability conditions (26) and (30).

4 The direction to push

In this section, we propose a way to assign an optimal motion
direction to the object, i.e. the y axis, such that themaneuvers
performed toward the target areminimized. In themeasurable
state vector x̄, the state variables ρ̄ and φ̄ are computed from
the given input images of the initial and desired poses of the
object. However, ᾱ can be arbitrarily defined by determining
the motion direction (i.e. defining the vector y). Therefore,
motion direction y may be defined from the best value of
ᾱ. In order to find the best motion direction, we propose to
minimize the Lyapunov function V (x) given in (33) for ᾱ

(see Theorem 2) when the object is in its initial configuration
before starting the pushing task. Here, we first rewrite the
Lyapunov function in terms of the measurable state vector x̄
using (8) which yields:

V (x̄) = x̄T T−T PT−1 x̄ . (52)

We then minimize (52) by subjecting to condition (42):

min
ᾱ

V (x̄) subject to ᾱ2 ≤ π2/4 and ψ̄2 ≤ π2/4

(53)

so that the solution ᾱ does not violate forward motion.
The values of T are bounded scalar functions, but they are
unknown in practice. In order to compute (53), and since the
actual values of T will not be computed in this uncalibrated
approach, we can use the approximation T � I, and then

V (x̄) � x̄T P x̄ . (54)

This approximation is exact only if there is no image distor-
tionwith respect to the realworld (e.g. an affine camera). This
is not the case in practice and therefore the computation for
the optimal value of ᾱ will be an approximation. Notice that
control stability is independent of this approximation, and
this only concerns to the efficiency in terms of performed
maneuvers.

Denoting pi j with i, j = 1, 2, 3 the entries of matrix P,
we can therefore write

V (x̄) � p11 ρ̄2 + p33 φ̄2 + p22 ᾱ2 + 2 p23 ᾱ φ̄ . (55)

We search the minimum of this function with respect to ᾱ:

∂V

∂ᾱ
� 2 p22 ᾱ + 2 p23 φ̄ = 0 . (56)

Solving for ᾱ and using the values of P we obtain

ᾱ = φ̄

(
k2φ − kαkρ + k2α

k2φ + kφkρ + k2α

)
. (57)
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Fig. 7 Two examples, each one in a column, of maneuvers with differ-
ent pushing directions (denoted with an arrow) on an object. a Pushing
direction with calibrated data. b Pushing direction with uncalibrated
data. c Arbitrary pushing direction. The pushing directions are com-
puted in a and b with the presented procedure. a shows an illustrative
example where the approximation in (54) is exact, whereas the uncali-
brated case is shown in b. c shows maneuvers by defining an arbitrary
pushing direction. It can be seen that examples in a and b perform better
with simple maneuvers

We finally use this solution to assign an approximately opti-
mal motion direction y to the object. Then, the object will be
pushed along this motion direction during the pushing opera-
tion.We note that this is computed only once at the beginning
of the pushing task and it is set for the rest. Moreover, the
stable control law does not violate the forward motion con-
dition (42) while moving the object toward the target during
the rest of the task.

Two different examples showing the performance of the
object motionwhen themotion direction is chosen arbitrarily
or following the procedure just presented are shown in Fig. 7.
The target position in the simulations is (x, y)T = (0, 0)T

and the initial position is also in both examples (x, y)T =
(−0.5, 0)T . The initial error inφ is 0◦, and 90◦ for the left and
right column example, respectively. In the first and second
rows, the control law is performed with the pushing direc-
tions computed as explained above, whereas in the third row
they are arbitrarily defined. The results in the first row are
computed using undistorted images (so the approximation in
(54) is exact). This is provided for illustrative purposes to

show the performance with the actual optimal value for the
direction to push. The results of the second row are obtained
in a general case where an approximation of the optimal val-
ues due to (54) are computed. In particular, the camera is
located at height of z = 5 m and slanted 45◦. It can be seen
that the first and second rows perform better than the third
row in the sense that less maneuvers are required to reach the
desired poses. The results in the second row also illustrate
that the proposed procedure to select the direction to push is
adequate for the uncalibrated framework.

5 Selection of the points to push

Once the motion direction for pushing is computed for a
given object, the next step is to choose two pushing points
on the contour of the object. These points should allow the
object to be pushed along the computed motion direction.

Here we show how to compute these two pushing points
on a convex object. Let us define the boundary of the object
as a function B(γ ) where angle γ ∈ [0, 2π ] is measured
counter-clockwise starting from y. First, we calculate the
angle β between the motion direction y and the inward unit
normal vector n at each point of the object boundary B(γ ):

β(γ ) = atan2 ( ( y × n )z , yT n ) , γ = 0 . . . 2π . (58)

Then, we find the pushing region on the object boundary
which satisfies:

βmin < β < βmax (59)

where |βmin| and |βmax| are equal, and they are defined by
the friction coefficient as μ = − tan βmin = tan βmax. Any
point B(γ ) that belongs to the pushing region is a possible
pushing point candidate. Finally, we choose the left pushing
point PL and the right pushing point PR as follows:

PL = B(γL ) with γL = γmin + Δγ (60)

PR = B(γR ) with γR = γmax − Δγ (61)

where γmin and γmax are the angles of the extremities of the
pushing region (βmin = β(γmin), βmax = β(γmax) ); and Δγ

is a small positive angle (e.g., Δγ ≈ 10◦). Figure 8 shows
two different examples of pushing points selection.

6 Experimental results

Manipulation of an object by pushing with two frictional
point contacts is validated by experiments. An uncalibrated
camera observes the scene from an arbitrary fixed pose. In
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Fig. 8 Examples illustrating the algorithm to select the pushing points
in a convex object with two different motion direction y (First and
third graph, respectively). The pushing points selected are denoted with
dashed arrows. Second and fourth graphs show the corresponding align-

ment angles β of each example. Angle β (58) is defined between the
motion direction vector y of the object and its inward edge normal vector
that varies along the boundary of the object B(γ )

the following experiments, we assume that the object has uni-
form density and therefore the center of mass will be located
at the centroid. Experiments are conducted with two differ-
ent groups of robots. First group is composed of twoKhepera
non-holonmic mobile robots, and the second group is com-
posed of two Kuka manipulators.

Next sub-sections explain how these different groups of
robots are used for pushing, and then present the results of
experiments. Additionally, video attachments are also pro-
vided to show examples of the control performance of these
pushing tasks.

6.1 Pushing with non-holonomic mobile robots

In general, we consider that the actuators can push in any
direction. However, in the following set of experiments
we use mobile robots as actuators. We remark that a non-
holonomic mobile robot can not push the object in every
direction. It can push only along its forwardmotion direction.
Therefore, to be able to use non-holonomic mobile robots to
manipulate the object, we first choose the two pushing points
on the object such that points are at equal distance to the grav-
ity center of the object along the motion direction y. Then,
the lateral components of the required action (which cannot
be produced by the mobile robots) are equal in magnitude
and opposite in sign for both robots. Therefore these compo-
nents are cancelled and the mobile robots are eventually not
required to perform lateral actions. This allows us to write
the linear speeds of the non-holonomic mobile robots from
(5) as below:

vL = v + rL x ω (62)

vR = v + rRx ω . (63)

Secondly, the non-holonomic mobile robots may diverge
from the pushing points. Therefore we correct the orienta-

Fig. 9 An object with two non-holonomic mobile robots for pushing

tion of the non-holonomic mobile robots toward the pushing
points (see Fig. 9) with a proportional control given below:

[
ω L

ω R

]
= −kω

[
α L

α R

]
, kω > 0 (64)

where ω L and ω R are the computed angular speeds; kω is the
positive control gain; andα L andα R are the orientation errors
of the non-holonomic mobile robots with respect to their
desired contact points on the object. Since the desired contact
point is implicitly used in (64), this control law guarantees
that the mobile robot is always pointing toward this contact
point. Given that the mobile robots move forward and that
they present unicycle motion constraints, this means that the
robots will keep contact with the object in the desired points
during pushing.

6.2 Pushing withmanipulators

Here, we explain how to push an object with a finger-like
manipulator tool tip. First, to prevent any divergence from
the pushing point, we assign a velocity vT to a finger-like
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Fig. 10 An object and one of the manipulator tool tips for pushing

tool tip so that it tracks its pushing point:

vT = −ke

[
((eT x ) x )T xF

((eT x ) x )T yF

]
, ke > 0 (65)

where ke is a positive scalar gain, e is the vector from the
finger-like tool tip to the pushing point, x is the axis of the
object coordinate frame, and xF and yF are the local coordi-
nate frame axes of the tool tip (see Fig. 10). This tool tip local
frame is computed directly from the available image infor-
mation. Equation (65) keeps a finger-like tool tip in contact
with the chosen pushing point. When (65) is integrated with
a pushing point velocity computed from (5), the pushing task
is performed correctly. This yields:

vFL
=

[
v T
L
xF

v T
L
yF

]
+ vTL

(66)

vFR
=

[
v T
R
xF

v T
R
yF

]
+ vTR

(67)

where vFL
and vFR

are the final velocities of the finger-like
left and right tool tips of the manipulators; where vTL

and
vTR

are the pushing point tracking velocities computed from
(65) for the left and right tool tips; and where vL and vR are
the pushing point velocities computed from (5). Later, these
final tool tip velocities are transformed to the joint velocities
of the manipulators through the known position and velocity
kinematics of the manipulators.

6.3 Experiments

6.3.1 Pushing with Khepera non-holonomic mobile robots

First part of the experiments is conducted with two Khep-
era non-holonomic mobile robots and a box shaped object.
The size of the box is 80 × 40cm. An uncalibrated camera
is used to observe the scene from a fixed pose. The camera,
connected through Firewire to a computer, is from Allied
Vision Technologies and mounts a lens with a focal length

Fig. 11 Box shaped object (left) and the two khepera robots (right)

of 3.6 mm. The setup of the robots is located on a table of
dimensions 2 × 1.5 m with the camera at a distance about
1.5m. The size of the robots is 13 cm in diameter and 7 cm in
height.We put patterns on the top of the robots and the object
so that they can be detected and identified in the images easily
(see Fig. 11). Since we proposed uncalibrated image-based
visual servoing, we do not compute the robots’ poses. The
computer that processes the images and computes the control
inputs is a laptop with an Intel Core 2 Duo CPU at 2.50 GHz
with operating system Ubuntu GNU/Linux (version 8.04).
The control scheme runs on this personal computer at some
10 Hz. The size of the acquired images is 1280 × 960 pix-
els. The code implementation is in C++ and the images are
processed with the OpenCV library. The control gains are
kρ = 0.2, kα = 1, kφ = 0.4, and kω = 2. The control veloc-
ities are sent to the mobile robots through wireless Ethernet
network connection.

Figures 12, 13 and 14 show the results of three differ-
ent experiments where the proposed control law pushes the
object from three different poses to the same target pose.
In each figure, the desired and initial configurations of the
box are shown in the images of the top row. The second row
shows the object in the final configuration after running the
control algorithm with the plot of the resultant robots’ path.
Third row presents the input velocities of the robots (vL , ωL ),
and (vR, ωR), computed from (62–63) and (64). Notice that
the maximum allowed velocity of the robots was set to 10
cm/s, so the output control values are saturated to this value.
The last row shows the evolution of the state variables of
the object ρ̄ and φ̄ during the pushing operation. From these
results, one can see that the object is placed to the target pose
correctly. Although we assume non-slip contact between the
robots and the object, varying distances can be seen between
the two pushers along the trajectories. This is a practical issue
due to system perturbations, such as the initial acceleration
of the pusher robots. Nevertheless, it can be seen that the sys-
tem recovers properly during the motion even if the transient
is long due to the low actions and slow motions. Note that
motions are required to be slow enough so that inertial forces
are negligible.

6.3.2 Pushing with Kuka dual-armmanipulator

Second part of the experiments is conducted with Kuka dual-
arm manipulator platform and a box shaped object. The
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Fig. 12 1st row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2nd row: Performed pushing
manipulation and robots’ trajectories. 3rd row: Evolution of the robots’
velocities. 4th row: State variables ρ̄ and φ̄ of the object versus time

setup of the robots is located on a table of dimensions about
80 × 200cm. The size of the box is 60 × 40cm. Kuka
dual-arm manipulator platform has a stereo camera head.
The camera model is Imaging Source DFK 31AF03-Z2 and
belongs to the TO40 Stereo Pan-Tilt Head from Robosoft.
One of these uncalibrated Firewire cameras is used to observe
the scene from a distance around 1.5 m (see Fig. 1). This
camera has zooming degree of freedom so its focal changes
between 5 and 45mm. The Kuka dual-arm manipulator
platform is connected to a personal computer. The control
scheme runs on this personal computer at some 25Hz. The

Fig. 13 1st row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2nd row: Performed pushing
manipulation and robots’ trajectories. 3rd row: Evolution of the robots’
velocities. 4th row: State variables ρ̄ and φ̄ of the object versus time

size of the acquired images is 1024 × 768 pixels. The com-
puter model used is a Dell Precision T3600 with processor
Intel Xeon at 3.60 GHz, and Ubuntu GNU/Linux operating
system (version 12.04). The code implementation is again
in C++ although now the images are processed with the
ViSP library (Marchand et al. 2005). The control gains are
kρ = 0.03, kα = 0.15, kφ = 0.05, and ke = 0.003. The com-
puted control velocities are sent to the pushing hand actuators
of the Kuka dual-arm manipulator using the robot model.

Figures 15 and16 show the results for a performedpushing
manipulation of the box shaped object with the Kuka dual-
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Fig. 14 1st row: Target (left) and initial (right) object poses with two
pushing non-holonomic mobile robots. 2nd row: Performed pushing
manipulation and robots’ trajectories. 3rd row: Evolution of the robots’
velocities. 4th row: State variables ρ̄ and φ̄ of the object versus time

arm manipulator platform. The images in Fig. 15 shows the
initial pose of the object and the the final pose when the tar-
get configuration is reached. In this manipulation, the initial
values of the state variables of the object were as follows:
ρ̄ = 127 pixels, ᾱ = −10◦ and φ̄ = 10◦. First row in Fig. 16
shows the evolution of the velocities of the tool tips of the
manipulators computed from (66) and (67) with the proposed
control law. Second row shows the evolution of the state vari-
ables ρ̄ and φ̄ of the object versus time. The results show that
the control performs properly and that the object converged
to the target pose correctly.

Fig. 15 Top image shows the initial pose of the dual-arm manipulator,
the box shaped object before manipulation, and the target pose frame
of the object. Bottom image shows the performed pushing manipula-
tion and the traces (blue and green) of the tool tips of the dual-arm
manipulator during pushing (Color figure online)

7 Conclusion

This paper proposed an uncalibrated image-based visual ser-
voing scheme to position objects on the plane by pushing
with two mobile robots or dual-arm manipulator. Standard
approaches usually require performing a number of discrete
maneuvers to guarantee reaching the target, whereas our
approach is smooth in the sense that the motion is performed
in one gowithout chaining severalmaneuvers. As can be seen
in the results, trajectories performed by the pushed objects
are smooth and continuous. Moreover, performing several
maneuvers would be specially inefficient in our framework
since it would require to repeat the control execution sev-
eral times, each time defining the new pushing points (and
translating the pushing actuators to them). In our approach,
the key point to avoid unnecessary maneuvers is that we
can initially choose the direction to push that minimizes the
initial energy of the system in the sense of Lyapunov. This
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Fig. 16 Results of the manipulation performed in Fig. 15. First row
shows the evolution of the velocities of the tool tips of the manipulators
computed from (66) and (67). The velocity of each tool tip consists of
a two dimensional vector where the x-component is plotted in red and
the y-component in blue. Second row shows the state variables ρ̄ and
φ̄ of the object versus time (Color figure online)

improves the efficiency because the cost over the entire tra-
jectory is reduced producing a more direct motion to the
target.

The stability of the control law of this uncalibrated
approach is also proven. Regarding the workspace of the
approach, there are no constraints for the possible desired
poses of the object as far as it can be appropriately pushed,
i.e. the direction to push computed by the method can be
applied in practice. These limits are defined by the con-
sidered assumptions. In particular, we constrain the setup
for convex objects, and we impose that no slip occurs dur-
ing the pushing. One of the conditions for the feasibility of
the proposed approach is the quasi-static assumption, which
is reasonable as long as the dynamic forces are negligi-
ble. Here, this assumption can be easily ensured by using
appropriate control gains to provide low control signals,
but also with enough thrust to overcome dead zones. The
correctness of the proposed control scheme is validated by
several experiments. Furthermore, this approach is easy to
put in practice since it is uncalibrated, and it is robust to
modeling errors since it is closed directly in the sensor
space.
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