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Abstract— In this paper, we present a dynamic modeling
method for parallel kinematic manipulators. This method is
built upon the postures (i.e., 3D orientation vectors, lengths
and self rotations) of the kinematic elements which form the
kinematic chains of the robot. Regarding the structure of the
above method, computer vision emerges as a good option to
obtain the postures of these kinematic elements. This method is
then validated experimentally on the commercial Adept Quattro
parallel robot.

I. INTRODUCTION

Unlike serial manipulators, parallel kinematic manipula-
tors (PKMs) are designed with two main performance objec-
tives in mind: high speed and precision [1]. To manipulate
precisely such a PKM at high speed, it is well known that
PKM should be controlled at dynamic level which requires
us to develop a dynamic model. If kinematic control is
used instead of dynamic control at high speed, then the
unconsidered physical effects (e.g., inertial forces) reduce
precision and may destabilize the control.

Therefore, in this paper, we want to contribute on ex-
ploitability of these performance objectives of PKMs by
proposing a vision-based and generic dynamic model.

The first question to ask here is: why do we choose a
vision-based approach? First of all, vision is particularly
relevant to the control of large class of PKMs. It was shown
that the end-effector pose control is more appropriate for
PKMs than joint configuration control [2], [3], [4], [5].
Indeed, joint configuration of a PKM does not fully describe
the robot configuration. A well-known example for this is the
Gough-Stewart platform which may have 40 real moving-
platform configurations for a given single joint configu-
ration [6]. For this reason, the forward kinematic model
(FKM) of PKMs is complicated to compute. The precision
of the estimated end-effector pose through FKM depends
on the completeness of the robot geometry modeling and
the identification accuracy of the model whereas the moving
platform configuration describes the complete geometry of
the robot without ambiguity.

Vision appears then to be a relevant solution for PKM
modeling and control since it allows the moving platform
pose to be sensed. Vision also allows for relative positioning
of the robot in a dynamic environment. This makes the
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name.surname@femto-st.fr
4Author is with Ecole Centrale de Nantes, IRCCYN, Nantes, France

name.surname@irccyn.ec-nantes.fr

control of a robot robust to uncertainties of the dynamic
environment and of the robot kinematic models. The only
drawback for a standard vision system is that it is too slow
(50-60 Hz) to feed back the dynamic control. This discour-
ages many not to use it in dynamic control. Fortunately we
now have a solution to this problem [7].

The second question to ask is: as a consequence of vision
can we come up with a generic model for PKMs? Most
of the PKMs have very complex and different geometries
so that desired performance objectives are satisfied. This
makes usually their models robot-specific. Also if one uses
only conventional motorized joint information, which is poor
for PKMs because of existing many other passive joints, to
write the models of these complex geometries, then models
of PKMs inflate, become slow, hard to understand and to
implement. This inevitably urges one to offer simplifica-
tions [8] and to omit some of the modeling errors, thus
giving simplified and fast [9] but less accurate new models
for control. Therefore, modeling of PKMs, based on joint
sensing, becomes inefficient when the geometric complexity
of the robot increases. We see once more that joint configu-
ration information is not relevant for modeling. Then we ask
ourselves, what if we had used visual information? Could it
be possible to write one simple, intuitive, and generic model
valid for all PKMs? Again, fortunately we have a positive
answer to this question [10].

In short, the main contribution of this paper is to unify
vision and dynamic modeling for a new vision-based generic
dynamic model, and to experimentally show the correctness
of the proposed model on the Adept Quattro parallel robot.

This paper goes on as follows: Section II presents the
dynamic model of the Quattro parallel robot which is based
on the generic method proposed in [10]; Section III shows
how computer vision can compute the dynamic states of
the previously proposed generic dynamic model; Section
IV describes the experimental validation process of the
proposed vision-based generic dynamic model and gives the
experimental results for the Adept Quattro parallel robot; and
Section V concludes the paper.

II. DYNAMIC MODEL OF THE QUATTRO ROBOT

The generic dynamic modeling method proposed in [10] is
inspired from the ideas from Khalil [3], Tsai [11], and mainly
Kane [12], [13]. This generic method has the following
two original characteristics: (i) It uses lines to model the
concrete moving bodies rather than the abstract joint axes.
This enhances the visual perception of a robot, such that a
human brain can almost vividly imagine the robot’s motion



Fig. 1. The Quattro robot.

by just reading the equations; (ii) Equations of motion use
simple linear vector algebra and are in compact form. This
eases the codability and the fast solvability of equations on
the computer. Even for the most complex robots, the inverse
dynamic model can be worked out with pen and paper. Here,
we show its application on the Quattro parallel robot.

A. The Quattro Robot

The Quattro is composed of four identical kinematic legs
which carry the articulated nacelle. See Fig. 1. Each of the
4 kinematic legs is actuated from the base by a revolute
motor located at Pi. A kinematic leg has two consecutive
kinematic elements: an upper-leg [PiAi] and a lower-leg
[AiBi]. Lower-leg and upper-leg are attached to each other at
Ai. At the top, the upper-legs are connected to the motors,
while at the bottom, the lower-legs are connected to the
articulated nacelle. See Fig. 2. The articulated nacelle is
designed with four kinematic elements [14]: the two lateral
kinematic elements (either [B1B2], [B3B4] or [C1C2], [C3C4])
and the two central kinematic elements ([C3C2], [C4C1])
linking lateral ones with revolute joints. See Fig. 3. The
configurations of the kinematic elements (KE) are defined
by the unit direction vectors of the bodies rather than the
non-linear joint coordinates. The static state of the robot is
therefore totally and redundantly defined by the unit vectors
(x). The end-effector pose (X) is composed of the origin (E)

Fig. 2. A kinematic leg.

Fig. 3. Nacelle.

of the end-effector frame and the orientation of the [C3C2]
moving platform (xe):

X,

[
E
xe

]
(1)

B. Kinematics of the Quattro Robot

A point on a kinematic leg can be reached by successive
additions of the scaled direction vectors of the kinematic ele-
ments. For example, an attachment point B i of the kinematic
leg to the nacelle can be expressed as follows:

B i = Pi + `pi x pi + `ai xai (2)

We can then write straightforward the linear velocity and
acceleration of this point with respect to the fixed robot base
frame as below:

Ḃ i = `pi ẋ pi + `ai ẋai , B̈ i = `pi ẍ pi + `ai ẍai (3)

Angular velocity ω and acceleration ω̇ of a kinematic
element of the Quattro robot can be written with respect
to the fixed robot base frame by means of only the direction
vector and the derivatives of the direction vector of the
kinematic element:

ω , x × ẋ , ω̇ , x × ẍ (4)

C. Kinematic Constraints of the Quattro Robot

From the closed-loop kinematics of the robot, it is possible
to relate the velocity of a kinematic element to the velocity of
the end-effector pose through a kinematic constraint matrix:

ẋ = M Ẋ (5)

where M ∈ ℜ3×6 is the kinematic constraint matrix which
relates the motion of a kinematic element to the motion of
the end-effector. The reader can look at [15] for more details.

D. Motion Basis of the Quattro Robot

Remember that the state of the robot is defined by the unit
direction vectors of the kinematic elements:

{x pi, xai, xbi } , i = 1, . . . ,4 (6)



where xbi = δi xe where δ1 = δ3 = 0, δ2 = −1, δ4 = 1.
Therefore, we choose the motion basis of the Quattro robot
as the time derivatives of these state variables:

{ ẋ pi, ẋai, ẋbi } , i = 1, . . . ,4 (7)

E. Kinematic Coordinates of the Quattro Robot

The kinematic coordinates express the velocity of the
whole robot in the previously chosen motion basis. That is
to say, velocity of every kinematic element is encoded in the
kinematic coordinates. Kinematic coordinates are computed
as partial derivatives of kinematic equations with respect to
the motion basis of the robot. Table I tabulates the linear
kinematic coordinates of the mass centers of the kinematic
elements (see Fig. 4), and the angular kinematic coordinates
of the kinematic elements.

Fig. 4. Mass centers.

TABLE I
THE (TRANSPOSED) KINEMATIC COORDINATES OF THE QUATTRO ROBOT

∂ Ṡ pi ∂ ω pi ∂ Ṡai ∂ ω ai ∂ Ṡbi ∂ ω bi

∂ ẋ pi
1
2 `pi I3 [x pi]

T
× `pi I3 0 `pi I3 0

∂ ẋai 0 0 1
2 `ai I3 [xai]

T
× `ai I3 0

∂ ẋbi 0 0 0 0 δ 2
i

1
2 hI3 [xbi]

T
×

F. Dynamic Coordinates of the Quattro Robot

Dynamic coordinates (i.e., generalized forces) express the
forces which contribute to the motion of the robot. Thus,
non-contributing forces are eliminated. Fig. 5 and Table II
explain the possible active and consequently reactive local
forces may appear on a kinematic leg of the Quattro robot.

TABLE II
THE LOCAL FORCES AND TORQUES OF THE QUATTRO ROBOT

Active Friction Inertia∗
Motor Gravity Motor Joint Motor KE

Forces(pi) 0 fg(pi) 0 0 0 f∗pi
Torques(pi) τxpi zpi 0 τ̄xpi 0 τ∗xpi

τ∗pi
Forces(ai) 0 fg(ai) 0 0 0 f∗ai
Torques(ai) 0 0 0 τ̄xai 0 τ∗ai
Forces(bi) 0 fg(bi) 0 0 0 f∗bi
Torques(bi) 0 0 0 τ̄xbi 0 τ∗bi

These local forces contain contributing and non-
contributing parts for the motion of the robot. Dynamic coor-
dinates are computed through the matrix-wise multiplication

Fig. 5. Local forces and torques which act on one of the identical kinematic
legs. Left figure shows the active forces and torques of a kinematic leg. Right
figure shows the reactive inertial and frictional forces/torques which balance
the active forces/torques.

of the Tables I and II:

Fi = Π i Σ i , i = 1, ...,4. (8)

where Fi = [FT
x pi

,FT
xai
,FT

xbi
]T is the vector of dynamic co-

ordinates of the i th kinematic leg; Πi is the 3× 6 matrix
whose elements are the cells of the Table I, where each cell
is a 3× 3; and Σi is the 6× 1 vector obtained by row-wise
summation of forces and torques in Table II.

G. Dynamic Constraints of the Quattro Robot

The dynamic constraints of the Quattro robot can be
written from the d’Alembert’s principle of virtual work as
follows:

MT
p Fp + MT

a Fa + MT
b Fb = 06×1 (9)

where Fp ∈ ℜ12×1, Fa ∈ ℜ12×1 and Fb ∈ ℜ12×1 are the
stacked vectors of the dynamic coordinates:

Fp =

 Fxp1
...

Fxp4

 , Fa =

 Fxa1
...

Fxa4

 , Fb =

 Fxb1
...

Fxb4

 (10)

and where M j ∈ℜ12×6 is a matrix composed of the stacked
constraint matrices of the corresponding kinematic elements
for j ∈ { p, a, b}. These constraint matrices come from (5).

H. Inverse Dynamics of the Quattro Robot

With some algebraic manipulations, starting from (9),
we can work out a linear representation of the dynamic
constraints as shown below:

A(x) Γ + b( ẍ, ẋ, x) = 0 (11)

where A ∈ℜ6×4 and b ∈ℜ6×1 are the configuration matrix
and the contributing efforts vector of the passive kinematic
elements of the robot, respectively. We can write straightfor-
ward the inverse dynamics of the Quattro robot from (11) as
follows:

Γ = −A†(x) b( ẍ, ẋ, x) (12)



where Γ is the vector of motor torques, and it is computed
by means of the direction vectors of the kinematic elements
and their time derivatives as a linear solution of (11).

III. COMPUTER VISION FOR KINEMATIC
ELEMENTS’ POSTURES

We use a computer vision method which is explained
in [16] to estimate the pose and velocity of the end-effector
of the robot at high rates (≈ 400Hz). The computer vision
method is based on the sequential acquisition approach of a
calibrated camera. In this method a rigid object is abstracted
as a set of 3D points, and it is observed by grabbing single
sub-images successively where each sub-image contains a
single visual point at a time. Afterwards, virtual visual
servoing (VVS) [17] minimizes an error defined between
the visual points observed sequentially from the moving rigid
object and their corresponding points calculated at successive
instants from a virtual model of this rigid object. Thus,
VVS makes virtual model converge to the current pose and
velocity of the real object.

A. Projection Model

The projection model of a set of 3D points Pi resulting in
a visually deformed shape of the object in the image is thus
given by:[

mi
1

]
× [K |0 ] cTo δTi

[ oPi
1

]
= 0 ∀ i = 1...n (13)

where n is the number of 2D-3D correspondences, oPi are
the points expressed in the object reference frame, mi is the
projected point in image coordinates, cTo is the homoge-
neous transformation matrix between the object and camera
frames at a reference time tre f , and δTi is the displacement
between tre f and the i th point acquisition time ti. Finally,
K is the matrix containing the camera intrinsic parameters,
whilst lens distortion is not shown here but is compensated
for.

B. Constant Acceleration Motion Model

In dynamic control process of a robot, control inputs are
acceleration signals. We assume that between two control
inputs the robot moves with a given acceleration under con-
stant acceleration motion model. Therefore, the displacement
δTi in the projection model of a moving rigid object (i.e.,
end-effector) should also evolve under constant acceleration
motion model. Thus the velocity screw ξ = (υ ,ω) of the
moving rigid object at time ti becomes:

ξ (ti) = ξ (tre f ) +
∫ ti

tre f

ξ̇ dt (14)

and subsequently the displacement δTi is written as follows:

δTi =
∫ ti

tre f

r
(

ξ (tre f ) +
∫ ti

tre f

ξ̇ dt
)

dt (15)

where r is the reshaping operator which transforms kinematic
screw into a 4 × 4 matrix:

r
(

υ

ω

)
=

[
[ω]× υ

0 0

]
(16)

C. Virtual Visual Servoing Control Law

The estimation method is based on minimization of the
reprojection errors built upon (13):

eu = m −m∗ (17)

where m ∈ ℜ2n×1 is the stacked vector of the calculated
image coordinates of the n reprojected points from the
model of the moving rigid object at successive instants, and
m∗ ∈ ℜ2n×1 is the stacked vector of the measured image
coordinates of the n visual points observed sequentially from
itself of the moving rigid object by a calibrated camera.

One can obtain an exponential decrease of the error by
imposing:

ėu = −λ eu (18)

The derivative of the reprojection error with respect to the
virtual time u of VVS [7] is given by:

d eu

du
=

d m
du

= L

[
ξ u

ξ̇ u

]
(19)

where L ∈ ℜ2n×12 is a matrix which relates the object
velocity ξ u and acceleration ξ̇ u to the image velocity of
the set of image points m. The subscript u indicates that
the velocity and acceleration twists are virtual. They do not
correspond to twists related to the actual object but to twists
related to the virtual object model which evolves along the
virtual time u to converge to the same state as the real object.

The virtual control law can be written from (17), (18) and
(19) as follows:[

ξ u

ξ̇ u

]
= −λ L†

(
m( cT̂o, ξ̂ ) −m∗( t )

)
, λ > 0 (20)

where cT̂o and ξ̂ are the previous estimates of cTo and
ξ . Note that L, m and m∗ are composed of rows that are
evaluated at successive time instants. Equation (20) provides
the pose and velocity correction vector. The object velocity
is thus obtained by integrating the acceleration ξ̇ u and the
pose is obtained by exploiting both velocity and acceleration
parts of the virtual control law.

The virtual object model converges to the same state as the
real object usually in one iteration. This single-iteration VVS
and the sequential small sub-image acquisition approach
increase the estimation speed to several hundreds Hz.

+
+

+
+

_
+

Control
law

Projection
model

.
w

Fig. 6. Pose and velocity estimation with virtual visual servoing scheme.

These estimated pose and velocity variables can be trans-
formed to the robot’s kinematic elements’ postures and to
their velocities through the kinematic models of the robot.



Figure 6 shows the VVS scheme, and Fig. 7 shows the
integration of VVS scheme into a computed torque control
(CTC) scheme. As it is seen in Figs. 6 and 7, the computation
of the pose velocity can be fed forward by the acceleration
output w of the PID controller of the CTC scheme. w
reflects the real acceleration of the robot between two control
sampling instances. The VVS scheme and the robot run in
parallel at the same frequency.

_+ PID IDM(   ,   )

_+

+
+ Robot

Vision-Based
Dynamic State

Estimator

w

Fig. 7. Vision-based computed torque control scheme.

IV. EXPERIMENTS

We validated the presented vision-based generic dynamic
modeling method on the Adept Quattro parallel robot (see
Fig. 8) as follows: (i) we prepared a desired trajectory;

Fig. 8. Experimental setup.

(ii) we moved the Quattro parallel robot on this desired
trajectory through the Adept’s built-in controllers (i.e., joint-
space PID control); (iii) we measured the control torques
of the motors which are coming from the Adept’s built-
in controllers while the Quattro parallel robot was moving
on the desired trajectory, and we recorded these torques as
ground truth; (iv) and also at the same time we observed
the motion (i.e., pose and velocity) of an artificial pattern
which is fixed to the end-effector of the Quattro robot by a
calibrated camera as explained in Section III; (v) afterwards
we calculated the postures of the kinematic elements of
the Quattro parallel robot and their velocities through the
observed motion of the artificial pattern and by using the
known kinematic models of the robot; (vi) then we were able
to compute the motor torques through the presented generic
dynamic modeling method; (vii) and we finally compared
the measured ground-truth torques and the computed torques.
Figure 9 shows these steps in a block diagram representation.
The kinematic parameters and most of the dynamic parame-
ters are taken from the robot data sheet and CAD files. The

overall mass and the friction parameters in the motors were
identified experimentally. Figures 10, 11 and 12 give the
reference trajectory (red) and the estimated trajectory (blue
dashed) by vision. The reference trajectory is an ellipse cycle
which is repeated three times. The major and minor axes’
lengths of the ellipse are 20cm and 5cm, respectively. There
is no rotational motion. On the trajectory, the maximum
velocity of the end-effector is about 70cm/s. Figure 13
superimposes the computed and measured torques versus
time. Table III tabulates the normalized root mean square
errors (NRMSE) of the computed torques with respect to the
measured torques. NRMSE expresses the error (deviation)
of the computed torques from the measured torques as a
percentage. From Fig. 13 and Table III, we see that the
computed torques are able to express well the dynamic be-
havior of the robot. The approximate 13% deviation from the
measurements is obtained with the CAD values and a simple
(i.e., manual) identification of friction. It thus qualitatively
validates the proposed model (and the associated approach)
for further implementation of the control. Quantitatively,
we can expect to reduce the deviation to less than 10%
using proper numerical identification. After that using our
model for control should improve the performance of the
robot, compared to the built-in controller (a simple PID) as
suggested theoretically by [5] and experimentally by [7].

Generic
Vision-Based

Vision-Based
Dynamic State

Estimator

Robot's Built-in
Controller

Trajectory

Robot
w

w

Fig. 9. Validation process of the vision-based generic dynamic model.
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Fig. 10. Reference (red) and estimated (blue dashed) elliptic trajectory of
the end-effector in 3D Cartesian space.

TABLE III
NRMSE OF COMPARED TORQUES OF MOTORS (%)

motor 1 motor 2 motor 3 motor 4
NRMSE 13.39 11.93 12.97 11.38
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Fig. 11. Reference (red) and estimated (blue dashed) Cartesian end-effector
poses of the Adept Quattro robot versus time.
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Fig. 12. Reference (red) and estimated (blue dashed) Cartesian end-effector
velocities of the Adept Quattro robot versus time.

V. CONCLUSIONS

We presented a new vision-based generic dynamic mod-
eling method for parallel kinematic manipulators, and we
validated its correctness by experiments on the Adept Quattro
parallel robot. We proposed a way to bring advantages of
computer vision to dynamic modeling of PKMs. Our next
step will be to put into practice the computed torque control
of PKMs based on this vision-based generic dynamic model.

As a future work, we plan to use the computer vision
method which is based on direct observation of the articu-
lated kinematic chains of the robot [18] rather than observing
a pattern attached to the end-effector of the robot. This
eliminates the use of an artificial pattern and thus the need for
pattern to end-effector calibration. Another future research
path is to adopt the proposed modeling method for efficient
kinematic and dynamic identification.
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