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Abstract

We address the hidden tumor visualization problem in augmented monocular liver laparoscopy. Conveying a

hidden tumor’s depth correctly to the surgeon in augmented monocular laparoscopy is extremely difficult and

still forms an unsolved problem. The depth conveyance can be splitted into two subsequent problems. First,

designing a visualization that convinces the user to see the tumor inside the organ. Second, enhancing this

visualization so that it also provides metric depth perception. The most promising visualization methods rely

on a preoperative CT organ model with the tumor to be registered to an intraoperative laparoscopic image.

Such a registration allows the organ’s intraoperative shape mesh to be overlaid on top of the augmented tumor.

The overlaid organ mesh guarantees a partial occlusion on the augmented tumor. This provides a powerful

depth cue for the surgeon’s perception. However, this type of registration, especially in liver laparoscopy,

is usually not real-time and sometimes not possible. This is because of the liver deformation and lack of

matchable features between the multimodal images. Subsequently, the tumor augmentation cannot be carried

out continuously to guide the surgeon. We propose a novel visualization method to address these limitations.

The proposed method replaces the deformable preoperative to intraoperative liver registration with a rigid

tumor registration via laparoscopic ultrasound (LUS) imaging. The proposed method handles surgical tool

occlusions, runs faster, and outperforms the state of the art in terms of depth perception, as shown in the user

study.
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1 INTRODUCTION

Mini-invasive surgery (MIS) offers significant advantages over open surgery, including reduced complications, shorter hospital
stays, and lower costs. However, MIS brings two challenges. First, it prevents the surgeon from palpating organs directly, making
it harder to locate tumors inside the organs. Second, while laparoscopic ultrasound (LUS) is a valuable intraoperative tool
for real-time visualization of in-organ tumors during MIS, it requires significant expertize to operate effectively. As a result,
accurately localizing tumors inside the organ remains a challenging task, even when using LUS.

Augmented reality (AR) guidance can make using LUS easier and help surgeons by giving clear and intuitive visual feedback1.
AR-guided surgery involves two critical steps. First, registration, where preoperative CT scans are aligned with intraoperative
laparoscopic images. Second, visualization, where the registered tumor is overlaid on the laparoscopic images to show its
location. Most of the literature on AR-guided surgery focuses on the registration step and ignores the second yet important
visualization step. We address the visualization step in laparoscopic liver surgery. This corresponds to the well-known difficult
occluded-object visualization problem in AR (i.e., the occluded object is perceived to float over its occluding surface rather than
behind it). This problem does not exist at all in the context of 3D cameras, but is nonetheless highly relevant in monocular liver
laparoscopy which uses a standard 2D camera. Specifically, in AR-guided liver surgery, hidden tumor visualization can be split
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F I G U R E 1 The left image shows a raw laparoscopic liver image. The middle image shows Transparent Overlay visualization
of the registered hidden structures such as the tumors (yellow) and veins (blue). The right image shows the overlaid registered
liver mesh on top of the augmented hidden structures. Images are taken from paper2.

into two subsequent problems. First, designing a visualization that convinces the user to see the tumor inside the liver. Second,
enhancing this visualization so that it also provides metric depth perception.

Most promising visualization methods rely on a preoperative CT liver model with the tumor to be registered to an intraoperative
laparoscopic image. Such a registration allows the liver’s intraoperative shape mesh to be overlaid on top of the augmented
tumor. The overlaid liver mesh guarantees a partial occlusion of the augmented tumor. This provides a powerful depth cue for the
surgeon’s perception. An example of this type of visualization can be seen in figure 1 retrieved from paper2. The visualization in
the right-most image in figure 1 convinces the surgeon to see the tumor inside the liver and not floating over the liver. This is
because of three powerful perceptual reasonings. First, the registered liver mesh overlaps the liver surface. Second, the registered
liver mesh partially occludes the augmented volumetric tumor. The augmented volumetric tumor is thus perceived behind the
registered liver mesh. Third, since the registered liver mesh tightly envelopes the liver surface, the augmented volumetric tumor
cannot be between the mesh and the liver surface. Consequently, the augmented volumetric tumor is perceived behind the liver
surface.

However, preoperative to intraoperative laparoscopic liver registration is usually neither real-time nor possible for every
laparoscopic image. This is because of two reasons. First, the registration has to handle the liver’s intraoperative deformation.
This is computationally very demanding. Second, preoperative to intraoperative laparoscopic liver registration requires that the
liver is visible as much as possible in the laparoscopic image so that the registration succeeds, see figure 1. However, the liver is
usually very partially visible in the laparoscopic images. This substantially reduces matchable features between the preoperative
liver model and the intraoperative laparoscopic image. Subsequently, the tumor’s registration and thus its augmentation cannot
be carried out continuously to guide the surgeon.

We propose a novel visualization method to address these limitations with three variant visualizations: (i) MoT which stands
for “Mesh-over-Tumor”, (ii) RoT which stands for “ROI-mesh-over-Tumor”, and (iii) RoT-D which stands for “ROI-mesh-over-
Tumor-with-Depth-indicator”. The proposed visualization method has two important contributions:

1. It eliminates the deformable preoperative to intraoperative liver registration. Instead, It suggests a rigid tumor registration
between three multimodalities: preoperative CT tumor model, intraoperative laparoscopic image, and intraoperative LUS
image. This makes it significantly faster and possible even with a very partially visible liver in the laparoscopic image.

2. It handles surgical tool occlusions. This often occurs during the suggested rigid tumor registration process through the use
of an LUS probe.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 explains the proposed visualization
method. Sections 4 and 5 present the user studies and results. Section 6 concludes the paper and outlines future work.

2 RELATED WORK

We review related work in surgical AR visualization. Each has its distinct strengths and limitations.
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F I G U R E 2 The proposed visualization method’s pipeline.

Transparent Overlay visualization. In previous work3,4,5,6,7,8,9,10,11, tumor models are semi-transparently overlaid onto the
liver surface, offering positional cues. However, this visualization misrepresents spatial depth relationships. This is because the
augmented tumor appears to protrude outside the organ surface and is thus perceived as floating above the organ rather than
underneath.

Inverse Realism visualization. This method addresses hidden structures visualization in MIS12. It renders the organ’s surface
textures onto a structure’s 3D model using edge features. This creates an ‘inverse realism’ effect where a hidden structure
remains visible with the occluding organ’s surface texture. However, when the organ’s occluding surface lacks texture, the effect
breaks down, and the visualized hidden structure appears floating above the organ.

Visualization via preoperative to intraoperative organ registration. A rigid registration method for uterus tumor localization
is proposed in13, which produces tumor visualizations with correct spatial depth relationships. However, its rigid organ
registration would not yield correct tumor localization for the liver. This is because the liver is highly deformable compared to
the uterus. A deformable registration method specifically for the liver is presented in2. It produces tumor visualizations with
correct spatial depth relationships. However, the deformable liver registration is not real-time and cannot be sustained for all
laparoscopic images as discussed in the introduction.



4

3 METHODOLOGY

The proposed visualization method’s pipeline is presented in figure 2. Its inputs are the current intraoperative laparoscopic and
LUS images, and the preoperative 3D tumor model.

These inputs undergo several processing steps: (i) rigid tumor registration, (ii) tumor’s depth retrieval, (iii) virtual window
generation, (iv) 3D mesh generation, and (v) instrument segmentation. The processed inputs through these steps are then rendered
and blended to produce the state-of-the-art visualizations (i.e., Transparent Overlay and Inverse Realism) and the three novel
visualizations (i.e., MoT, RoT and RoT-D). We next explain each step below.

Rigid tumor registration. This step registers a rigid preoperative 3D tumor model to a 2D laparoscopic image using an
intraoperative LUS image. The 3D tumor model is created from the segmented preoperative CT. This step involves solving two
substeps. First, registration of the rigid preoperative 3D tumor model to the LUS image, e.g., similar to3. It employs content-
based image retrieval (CBIR) to estimate the LUS image’s pose on the preoperative CT model3. Second, LUS imaging plane’s
pose computation in the laparoscope’s coordinate frame, e.g., similar to14. It uses the LUS probe’s silhouette contour from
the laparoscopic image and employs sequential RANSAC runs on this contour for robust pose estimation14. Both3 and14 are
markerless and trackerless methods. Subsequently, this registration step is feasible in the operating room.

Tumor’s depth retrieval. This step retrieves the depth from the registered tumor. The depth is the distance between the LUS
sensor and the tumor. We consider that the tumor registration is correct, thus the retrieved tumor depth is correct. However, the
tumor’s depth accuracy depends on the accuracy of two subsequent methods. (i) First, a method used for the segmentation of the
tumor in an intraoperative LUS image (e.g.,15 achieves 87% Dice score). (ii) Second, a method used for the registration of the
3D tumor model to the segmented intraoperative LUS image (e.g.,3 achieves TRE of 3 mm).

Virtual window generation. This step generates a virtual window centered on the rendered tumor’s center of mass pixel position.
Its size is about 1.5 times of the tumor’s rendered size. It also includes the edge features computed from the liver’s surface in the
laparoscopic image.

3D mesh generation. This step generates two 3D meshes. The first mesh is for the liver’s visible surface. The second mesh is
for a region of interest (ROI) on the liver’s visible surface. Specifically, the ROI corresponds to the virtual window area.

Mesh generation on the liver’s visible surface. First, the liver is segmented in the laparoscopic image using MedSAM16,17,18, a
foundation model fine-tuned for laparoscopic imagery. Second, the depth map of the segmented liver is computed using the
Depth Anything Model (DAM)19,20. The depth map is then used to generate the liver’s visible surface 3D mesh. Although this
3D mesh is not very accurate, its rendering perfectly aligns with the segmented liver in the laparoscopic image. See figure 3.

F I G U R E 3 3D mesh generation on the liver’s visible surface.

ROI mesh generation on the liver’s visible surface. Two binary masks, the liver’s segmentation mask and the virtual window mask,
form the ROI mask using the logical AND operation. Second, the ROI mask, along with the corresponding RGB laparoscopic
image, is passed to DAM to compute the ROI depth map. Finally, this is used to generate the ROI 3D mesh. See figure 4.

Instruments segmentation. We know that the visible parts of the surgical instruments occlude everything behind them.
Therefore, the instruments’ pixels must not be altered21,22,23. We find these pixels using SurgicalDeSAM24. SurgicalDeSAM is
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F I G U R E 4 ROI 3D mesh generation on the liver’s visible surface inside the virtual window.

a foundation model adapted from Segment Anything Model (SAM) and trained on surgical scenes to segment instruments in
laparoscopic images. SurgicalDeSAM achieves 90% Dice score for laparoscopic instrument segmentation at 30 fps on EndoVis
2017 and 2018 datasets. Consequently, this step does not form a bottleneck in the pipeline for real-time feasibility.

Rendering. This step renders seven layers: (i) input image, (ii) tumor’s depth bar, (iii) tumor, (iv) virtual window, (v) liver’s
visible surface mesh, (vi) ROI mesh, and (vii) instruments. The input image layer is rendered as the original input image. The
tumor’s depth bar layer is rendered using tumor’s depth information. The tumor layer is rendered from the registered tumor. The
virtual window layer is rendered from the generated virtual window. The liver’s visible surface mesh layer and the ROI mesh
layer are rendered from the generated 3D meshes. The instruments layer is rendered from the segmented instruments image.

Blending. This step blends the rendered layers to form five visualizations: (i) Transparent Overlay visualization, (ii) Inverse
Realism visualization, (iii) MoT visualization, (iv) RoT visualization, and (v) RoT-D visualization. Transparent Overlay
visualization is blended from the input image and the tumor layers using depth-aware transparency. Inverse Realism visualization
is blended from the input image, the tumor and the virtual window layers, as in12, which has been shown to improve the hidden
structures perception. The virtual window, in this visualization, gradually transitions from semi-transparent at the center to fully
transparent at the boundary. MoT visualization is blended using the input image, the tumor, the virtual window, the liver’s visible
surface mesh, and the instruments layers. The liver’s visible surface mesh is blended using depth-aware brightness, enhancing
the liver’s shape perception. RoT visualization is blended using the input image, the tumor, the virtual window, the liver’s ROI
mesh, and the instruments layers. Again, the ROI mesh is blended using depth-aware brightness. RoT-D visualization is blended
using RoT visualization and the tumor’s depth bar layer.

Discussion. The proposed visualization method replaces the difficult deformable registration between the preoperative 3D liver
model and the intraoperative 2D laparoscopic image, which provides the liver’s full shape mesh and the tumor’s location, with
the 3D mesh generation and the rigid tumor registration steps.

Advantages. There are two advantages. The first advantage is that the proposed method can make AR guidance possible even
with a very partially visible liver in the laparoscopic image. This is because rigid tumor registration requires only the LUS probe
to be visible in the laparoscopic image. The second advantage is that the proposed method can run significantly faster. This is
mainly because it uses a rigid tumor registration and not a deformable liver registration. Each step of the proposed method can be
achieved in real time using recent deep learning methods. Specifically,25 and26 perform 3D to 2D deformable liver registration
at 16 fps and 66 fps, respectively.15 and27 segment hepatic intraoperative ultrasound images at 15 fps and 30 fps, respectively.
This shows that rigid tumor registration step’s real-time feasibility is possible.

Limitations. We list the important limitations of the proposed method. The rigid tumor registration requires detection and
segmentation of a tumor in an LUS image. This can be hindered for two reasons. First, LUS images are usually very noisy.
Second, the tumor might be isoechoic. In such a case, a potential fallback strategy would use a deformable registration method
(e.g.,28,29) that aligns a preoperative 3D liver model to the intraoperative laparoscopic image, which does not depend on the
LUS image. Afterward the 3D mesh generation requires an accurate liver segmentation. This can be hindered if the laparoscopic
image is underexposed.
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F I G U R E 5 Visualizations for tumors occluded by a surgical instrument.



Hidden Tumor Visualization in Augmented Monocular Liver Laparoscopy 7

im
a

g
e

5

Laparoscopic image TO IR

MoT RoT RoT-D

im
a

g
e

6

Laparoscopic image TO IR

MoT RoT RoT-D

im
a

g
e

7

Laparoscopic image TO IR

MoT RoT RoT-D
F I G U R E 6 Visualizations for tumors not occluded by a surgical instrument.

Source of errors. There are four steps where errors might occur. (i) Preperative 3D tumor model segmentation. State-of-the-art
segmentation methods achieve over 80% Dice score. However, this step can also be done manually by an expert before the
surgery to further increase precision. (ii) Intraoperative LUS image tumor segmentation. State-of-the-art segmentation methods
achieve 87% Dice score (e.g.,15). (iii) Intraoperative LUS probe pose estimation. State-of-the-art pose estimation methods
achieve sub-millimeter accuracy (e.g.,14). (iv) Rigid tumor registration between LUS and CT. State-of-the-art registration
methods achieve 3 mm TRE (e.g.,3). Overall, the state of the art methods for each part of the proposed pipeline reach reasonable
accuracies, with regularly improving performance over the years.
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F I G U R E 7 Visualizations for tumors with imperfect liver segmentation.

4 USER STUDY ON VISUALIZATIONS AND RESULT

We conducted a user study to compare MoT, RoT, and RoT-D visulazations against the Transparent Overlay (TO)
visualization3,4,5,6,7,8,9,10,11 and the Inverse Realism (IR) visualization12.

Visualization cases. We used 10 laparoscopic liver images. Each image was retrieved from a different liver resection surgery.
This helps evaluate the visualization methods across 10 diverse cases. These cases are shown in figures 5, 6 and 7.

User study. We removed the methods’ names. Instead, we used “Visualization 1” for TO, “Visualization 2” for IR, “Visualization
3” for MoT, “Visualization 4” for RoT, and “Visualization 5” for RoT-D. Participants read the following: “We propose 5 different
hidden tumor visualizations for cases from 10 different surgeries. Please vote for the best visualization”. Participants then voted.
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F I G U R E 8 User study results.

Participants. 39 people participated in the study. Participants include surgeons, healthcare professionals, and non-healthcare
professionals.

Surgeons. 10 participants were surgeons. 7 were laparoscopic liver surgeons. 2 were laparoscopic surgeons operating within the
abdominal cavity. 1 was laparoscopic surgeon operating outside the abdominal cavity. 4 of them were senior surgeons with more
than 4 years of experience.

Healthcare professionals. 6 participants were healthcare professionals.

Non-healthcare professionals. 23 participants were non-healthcare professionals. They are researchers in the field of computer
vision applied to medical augmented reality.

Results on all cases. The user study results are shown in figure 8 for the surgeons, healthcare professionals and non-healthcare
professionals. The results reveal that RoT-D outperforms the other visualizations in all cases. See figure 9 for an example of
RoT-D. TO came as runner-up in surgeons’ votes. This shows that surgeons also prefer less cluttered visualizations. MoT came
as runner-up in healthcare and non-healthcare professionals’ votes. This shows that the liver’s visible surface mesh corrects the
spatial depth perception of the tumor. Surgeons preferred “Visualization 5” (RoT-D) across all images, and among their remarks
was that the depth indicator bar provides critical information.
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F I G U R E 9 An example for the winner visualization RoT-D.

Results on cases where tumors were occluded by an instrument. The user study in figure 8 reveals that for cases shown in
figure 5, RoT-D substantially outperforms the other methods.

Results on cases where tumors were not occluded by an instrument. The user study in figure 8 reveals that in the three cases
shown in figure 6, RoT-D outperforms the other methods even when the tumor is not occluded by an instrument.

Results on cases where the liver’s segmentation was imperfect. The user study in figure 8 reveals that in the three cases
shown in figure 7, RoT-D outperforms the other methods even for images that are underexposed or cluttered by blood.

5 USER STUDY ON DEPTH ESTIMATION AND RESULTS

We conducted a user study to evaluate depth estimations of the tumor using RoT visualization.

Depth estimation cases. We used 4 laparoscopic liver images from 4 different patients to generate RoT visualizations of the
registered tumors. These four cases are shown in figure 10.

User study. We asked the participants to estimate the depth of the tumors in these four cases in centimeter units. The depth bars
were not shown to the participants.

Participants. The same 10 surgeons participated to this user study.
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Case 1 Case 2

Case 3 Case 4

F I G U R E 10 User study on tumor depth estimations. The depth bars are not shown to the users while they were making the
estimates. Multiple depth estimates have the same value and their red lines are superimposed on the depth indicator bars.

Results. The estimated depths by the surgeons are shown as red horizontal lines on the depth bars of each visualization in
figure 10 and listed in table 1. Table 1 reveals that (i) the surgeons’ estimates are consistent, except for case 4 which has higher
standard deviation and (ii) the average errors are large, except for case 1 which is about 5%. Therefore, we observe that tumor
depth estimations from 2D laparoscopic images are unreliable.

T A B L E 1 User study on tumor depth estimations using RoT visualization.

GT depths (cm) 10 surgeons’ depth estimates (cm) Mean ± Std (cm) Relative errors

Case 1 2.09 2 3 3 2.5 2 3 2 2 1 1.5 2.2 ± 0.64 5%
Case 2 3.02 1 1 1 1 2 1 1 2 0.5 0.5 1.1 ± 0.49 63%
Case 3 2.40 3 2 2 2 1 2 1 1 2 2.5 1.9 ± 0.63 20%
Case 4 0.76 2 2 0 1 1 1 6 5 0.2 0.2 1.8 ± 1.96 136%

6 CONCLUSION

We have proposed a novel visualization method with three visualization variants named MoT, RoT and RoT-D, for hidden tumors
in liver laparoscopy. As opposed to existing methods requiring deformable registration to account for the complete parenchyma,
we only require registration of the tumor, which can be expressed rigidly owing to its higher stiffness, resulting in a simpler



12

problem with stabler outcomes. This makes the proposed visualization method more applicable. It can be seamlessly applied to
multiple subsurface structures, including multiple tumors and the vascularisation; for simplicity, however, we have discussed
and experimented with the single tumor case only. A user study has shown that the proposed RoT-D visualization significantly
improves the hidden tumor’s depth perception in various surgical scenes compared to state-of-the-art tumor visualizations.

Future work shall (i) study segmentation of the gall-bladder, falciform ligament, and blood pixels to improve the liver’s outlines
in the visualization, (ii) study tracking of the liver’s mesh across successive images to prevent flickering in the visualizations, (iii)

study real-time implementability, (iv) study extension to other organs, (v) conduct phantom and ex-vivo studies to quantitatively
assess the accuracy, robustness, and clinical usability of the proposed visualization method, (vi) evaluate tumor depth estimations
from the proposed visualizations (excluding ROT-D) against the known absolute depths, and (vii) study the visualization of the
tumor’s depth accuracy.
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