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Abstract— In mini-invasive surgery, the laparoscopic ultra-
sound probe is visible in the laparoscopic image. We address
the problem of estimating the probe pose with respect to the
laparoscope without using markers and additional sensors. We
propose the first method using a single standard laparoscopic
monocular RGB image. It is robust, initialization-free and runs
at 10 fps, thus forming a promising tool to improve robotic and
augmented reality-based surgery.

I. INTRODUCTION

Mini-invasive surgery (MIS) has important advantages
over open surgery. It reduces the severity of postoperative
complications, the length of hospital stay, and healthcare
costs [1]. MIS however does not allow the surgeon to palpate
the organ. Consequently, the localization of tumors internal
to the organs forms a surgical challenge. Laparoscopic ul-
trasound (LUS) is one of the important intraoperative tools
to help localize such tumors. In particular, LUS forms the
gold standard for liver and kidney surgery. However, LUS
has drawbacks, including a long learning curve and operator
dependence. Two applications were proposed to mitigate
these drawbacks: robotically-controlled ultrasound (RobUS)
and augmented reality (AR) based guidance [2], [3]. RobUS
relieves the surgeon from manually maneuvering the LUS
probe to find and track the tumor; AR-based guidance auto-
matically fuses the LUS images into the laparoscopic images.
Both applications are very promising in terms of surgical
assistance; however, they crucially depend on the ability to
quickly and accurately solve the LUS pose problem, which
is to estimate the position and orientation of the LUS probe in
the laparoscope’s coordinate frame, or equivalently the rigid
body motion between the LUS probe and the laparoscope.
Specifically, most LUS probes include an articulated joint
connecting a shaft to the transducer head and the ultrasound
probe pose refers to the head’s.

The LUS pose problem is challenging, owing to the oper-
ating room (OR) conditions, with four main reasons. First,
the laparoscope is the only sensor and it provides monocular
RGB images. Second, the LUS probes are usually textureless,
shiny, and partially occluded. This makes it difficult to find
features in the laparoscopic images that strongly constrain
the pose. Third, an approach using markers, optical or
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electromagnetic tracking would require one to introduce new
elements or sensors in the abdominal cavity, which is highly
impractical and hardly feasible for obvious sterilization and
safety reasons. They would also increase the OR clutter and
the risk of occlusions by the staff and other devices. Fourth,
surgical robots with cable-driven actuation do not allow one
to estimate LUS pose reliably via their internal encoders.
This is because of the inherent inaccuracy of the readings [4]
and the error accumulation of encoder values over time [5].
Even with an accurate kinematic model of the robot and
tools, drop-in US probes are grasped differently each time
by the robot’s gripper.

We set four requirements for a practical LUS pose method:
it should be free of (i) markers, (ii) extra sensors, (iii)
(re)initialization, and should (iv) run in real-time in any OR.
As for the vast majority of pose estimation problems, existing
LUS pose estimation methods can be broadly split into two
categories: (C1) methods requiring new elements or sensors
to be integrated into the OR, and (C2) methods using only
the standard laparoscopic monocular RGB images. Methods
in category C1 use either an off-the-shelf tracking device
requiring special equipment such as electromagnetic trackers
and optical motion capture systems [6], [7], or marker-based
vision techniques [8]. Methods in this category thus fail
requirements (i) or (ii); yet, they form the state-of-the-art
in LUS pose estimation. On the other hand, methods in
category C2 are promising, as they generally fulfill the four
requirements for a practical solution by construction. Yet, this
category is still void of existing methods for LUS pose. We
propose the first method in category C2 for LUS pose estima-
tion complying with the four requirements. Our method uses
the observation that most existing commercial LUS probes
have cylindrical shaft and head shapes and hemispherical
tips. These include Fujifilm L44LA, Siemens Acuson P300
LP323, Philips L10-4lap, SonoScape LAP7, and Aloka UST-
5418. We model the LUS probe mathematically as a straight
homogeneous spherical cylinder (SHSC) segment, which is
also known as a spherocylinder [16]. We define the LUS
pose as the position of the tip’s hemispherical center and
as the direction vector of the head’s cylinder axis. It is
obvious that, owing to the symmetry of the spherocylinder,
a 1 DoF rotational ambiguity exists on the pose, as an
unrecoverable angle about the cylinder axis. From this model,
we propose a vision-based solution method named LUP
(Laparoscopic Ultrasound Pose). Our method takes as input
the laparoscopic image, the laparoscope intrinsic calibration,
and the spherocylinder radius and returns the LUS pose



TABLE I
RELATED WORK IN IMAGE-BASED SURGICAL TOOL POSE ESTIMATION.

Reference Tool #DoF Initialization-free Single image FPS Marker-free Additional sensors
Sarikaya et al. [9] Surgical tools* 2** ✓ ✓ 10 ✓ None
Laina et al. [10] Surgical tools* 2** ✓ ✓ 18 ✓ None
Kurmann et al. [11] Surgical tools* 2** ✓ ✓ 9 ✓ None
Ye et al. [12] Surgical tools* 6 × × 29 ✓ Robot encoders
Allan et al. [5] Surgical tools* 6 × × 0.9 ✓ None
Allan et al. [13] Surgical tools* 6 × × 3 ✓ None
Doignon et al. [14] General cylinder 4 ✓ ✓ × ✓ None
Zenteno et al. [15] Fiberscope 5 × × † ✓ None
LUP (proposed) LUS 5 ✓ ✓ 10 ✓ None

* Passive tools not comprising sensors ** In 2D image space † Just mentioned “real-time” and FPS not reported

automatically. It relies on two main technical contributions:
• A well-engineered algorithmic pipeline, including im-

age segmentation and robust model estimation.
• A novel minimal formulation for the reconstruction of

a spherocylinder from its occluding contour.
We provide numerous experiments showing that LUP re-
spects the four requirements of a practical solution and thus
has the potential to be directly deployed to standard ORs.

II. RELATED WORK

We review related work in vision-based surgical tool pose
estimation and sphere and cylinder reconstruction.

A. Vision-based Surgical Tool Pose Estimation

Tracking the surgical tools of the da Vinci robot in 2D im-
ages is well-studied [9]–[11]. For tool pose estimation, [12]
incorporates robot joint values and achieves a fast run-time.
[5], [13] use optical flow to achieve 3D tool tracking. These
works are for specific tools and inapplicable to LUS. For
tools closer to an LUS shape, [14] includes a markerless
method but only for cylinders, lacking the tip position. [15]
finds the pose of a cylindrical fiberscope by maximizing the
similarity of binary masks based on [17]. This method is
applicable to LUS, but is overly sensitive to the quality
of the masks. These works are summarized in Table I.
Finally, [18]–[21] register LUS and laparoscopic images to
the preoperative CT model. While beneficial for AR purposes
and indirectly providing the LUS pose, they are complex and
unlikely to run in real time. In contrast, the proposed LUP
method simply requires an RGB image as input and makes
simple, yet general, assumptions on the LUS probe shape. It
is thus widely applicable in standard ORs.

B. Sphere and Cylinder Reconstruction

Both the cylinder and sphere are quadric surfaces, which
can be reconstructed from images. There exist methods
exploiting multiple images such as [22], but we focus on
single image methods. Existing methods follow two steps for
both the cylinder and sphere: 1) occluding contour detection
and 2) shape reconstruction from the occluding contours. For
the cylinder, the occluding contour is a pair of lines [23]–
[25], from which the cylinder axis can be reconstructed and
also its depth, should the radius be given. For the sphere,
the occluding contour is in general an ellipse, which can
be estimated following [26], from which the sphere can be

reconstructed given the radius [27]. The main shortcoming
of these methods is their computational requirements. In
particular, at least 5 points are needed to reconstruct the
sphere center for a known radius, making it impractical to use
in a random sampling robust method such as RANSAC, as
the number of required samples will be prohibitively large. A
very recent work [28] estimates the sphere directly without
ellipse fitting. The minimal case for this method requires
only 3 points and thus speeds up RANSAC substantially.
In contrast, we model the LUS pose using a hemisphere-
cylinder pair forming a spherocylinder shape. We propose a
new minimal formulation for the hemisphere reconstruction
from a single view, which only requires 2 points from the
hemisphere silhouette, constraining the solution by the 2 sil-
houette lines of the cylindrical part. Our minimal formulation
thus brings a further speed boost to RANSAC.

III. METHODOLOGY

A. Problem Statement

Given a monocular RGB image I
LAP

of a calibrated
laparoscope and the spherocylinder LUS head radius r, we
estimate the pose ξ

LUS
of the LUS probe seen in I

LAP
.

Notation and modelling: We define si ∈ ℜ2, cj ∈ ℜ2 and
ok ∈ ℜ2 as the occluding contour points of the hemisphere
and cylinder, and other points, respectively. The point indices
count up i = 1 . . . n ∈ N, j = 1 . . . m ∈ N and k =
1 . . . t ∈ N. The initial set of unclassified image contour
points is thus P = {si, cj , ok | ∀ i, j, k }. We denote the
laparoscope’s intrinsic parameter matrix as K ∈ ℜ3×3 and
the lens distortion parameters with set D. These parameters
are used to project a 3D point in the camera coordinate
frame cX ∈ ℜ3 to an image point x ∈ ℜ2. Equivalently,
x̄ ∝ K cX where x̄ = [x⊤ , 1]⊤ is the image point in
homogeneous coordinates. The left superscript c indicates
the camera coordinate frame. A line ℓ ∈ ℜ3 in Hesse normal
form on the image plane holds ℓ⊤ x̄ = 0 for any of its
points x̄. The backprojection of line ℓ ∈ ℜ3 is a plane
whose unit normal vector is cm = K⊤ℓ / ∥K⊤ℓ ∥. The
occluding contour of the LUS head’s cylinder forms a pair
of image lines denoted ℓ+ and ℓ−, oriented outwards from
the cylinder. We denote the normals of the backprojection
planes of these lines as cm+ and cm−. The backprojection
of an image point x ∈ ℜ2 is a ray that starts from the optical
center and passes through this image point. We denote the



direction of the ray with a unit vector cx = cx/∥ cx ∥
where cx = K

−1

x̄. We denote the hemisphere center of
the spherocylinder as cH and the direction of the ray which
passes through it as ch. We denote the cylinder axis direction
of the spherocylinder as cu. Finally, we assemble the LUS
pose into a vector ξ

LUS
= [ cH⊤, cu⊤ ]⊤ ∈ ℜ6×1 with

∥cu∥ = 1. Figure 1 shows the spherocylindrical LUS model.

Fig. 1. Proposed LUS head geometry from two viewpoints.

Solution pipeline: Our pipeline has two main steps: (i)
LUS probe segmentation and contour extraction, and (ii)
pose estimation from unclassified contour points, which
we explain in the next two sections. Both steps represent
challenging problems.

B. LUS Probe Segmentation and Contour Extraction

This step is a semantic segmentation problem, which
we address with deep learning (DL) [29]. We trained and
compared the state-of-the-art neural networks, including
UNet [30], [31], TernausNet [32] and LinkNet [33]. LinkNet-
34 used in [34] provided the best results. First, we sam-
pled laparoscopic images from laparoscopic liver surgery
collected in our hospital with prior ethical approval. Second,
we manually segmented the LUS probes in these images
to generate the ground-truth masks, with segmentation val-
idation by two medical experts. Intentionally, we selected a
low quantity of images (111) from Surgery 1 for training to
demonstrate the robustness of our algorithm toward improper
segmentation. We augmented the data with flipping and crop-
ping. Third, we trained the networks and tested their accuracy
with a different surgery (144 images from Surgery 5) with the
Intersection over Union (IoU) metric in test images. LinkNet-
34 achieved the highest accuracy, at 87%. The bottom-left
image in figure 2 shows a qualitative result. We extract the
LUS probe’s contour points from the segmentation mask
using [35]. Our experiments in section IV-B use laparoscopic
images from 5 other surgeries.

C. Pose Estimation from Unclassified Contour Points

We use sampling-based robust estimation from a minimal
solution.

1) Minimal solution for hemisphere reconstruction: Our
solution method requires 2 points { s1, s2 } on the hemi-
sphere silhouette and 2 silhouette lines { ℓ+, ℓ− } on the
cylinder. The points backprojections are the rays with direc-
tions { cs1,

cs2 }. The lines backprojections are the planes

with normals { cm+,
cm− }. The two planes are tangent

to the hemisphere and to the cylinder of the spherocylin-
der. Given the spherocylinder radius r, the tangent planes
constrain the hemisphere center and the cylinder axis to
lie on a 3D line L parallel to the 3D intersection line of
the two tangent planes. While line L fully constrains the
cylinder axis, it leaves 1 translational DoF to the hemisphere
center. Fortunately, a ray from the hemisphere silhouette is
also tangent to the hemisphere, which further constrains the
hemisphere center on the line L. Specifically, while a single
tangent ray leaves two possible solutions, adding the second
tangent ray fully resolves the hemisphere center.

Concretely, any image point’s ray direction csi from the
hemisphere silhouette holds the following relation due to the
rotational symmetry:

cs⊤i
ch = cos (α) (1)

where ch is the direction of the ray passing through the
hemisphere center, and α is an unknown angle encoding the
hemisphere center depth as d = r/ sin (α). Similarly, any
image line ℓ tangent to the hemisphere silhouette defines a
plane whose outward normal cm holds the following relation
due the rotational symmetry:

cm⊤ ch = cos
(π
2
+ α

)
(2)

Using equations (1) and (2), we write the following minimal
linear system:[

cs1 +
c m+,

cs1 +
c m−,

cs2 +
c m+

]︸ ︷︷ ︸
Q

3×3

⊤ ch = λ13×1 (3)

where λ = cos (α) + cos
(
π
2 + α

)
and Q

3×3
is the mini-

mal design matrix. Solving (3) for ch and α leads to the
hemisphere center cH, as shown in Algorithm 1. An n-point
overdetermined case with n ⩾ 3 has the design matrix:

Q
3×2n

=
[
cs1 +

c m+,
cs1 +

c m−, · · · , csn +c m−
]

(4)

and solved in the least-squares sense using the pseudo-
inverse

(
Q⊤)† for the scaled ray direction vector as:

ch =
(
Q⊤)† 1

2n×1
(5)

The n-point hemisphere reconstruction is obtained by re-
placing the expressions in lines 1 and 2 of Algorithm 1 with
equations (4) and (5), respectively.

2) Principal algorithm: We give the main LUP method in
Algorithm 2, with a complete pipeline including LUS probe
segmentation and contour extraction in line 1. It continues
with distortion correction of the unclassified contour points P
in line 2 and then reaches the main part, in lines 3 to 10. We
estimate the pose and classify the contours simultaneously
through sequential RANSACs. Each RANSAC internally
iterates with a minimal solution method on random sample
sets and terminates with a best-fit solution on the largest
consensus set. Once a RANSAC ends, the contour points
associated with its best-fit solution are removed from P . The
following RANSACs thus operate on fewer points, which



Algorithm 1: 2-point hemisphere fit

Inputs: ray directions {cs1, cs2} on hemisphere
silhouette, plane normals {cm+,

cm−} on cylinder
silhouette, spherocylinder radius r.

Output: Hemisphere center cH ∈ ℜ3.
Design matrix

1 Q = [cs1 +
c m+,

cs1 +
c m−,

cs2 +
c m+]3×3

Ray direction to hemisphere center
2 ch =c h/||ch|| where ch = Q−⊤ 1

3×1

Depth
3 d = r/ sin

(
0.5 arcsin

(
1− 1/||ch||2

))
Hemisphere center

4 cH = d ch

Algorithm 2: LUP – Laparoscopic Ultrasound Pose
Inputs: Laparoscopic image I

LAP
, spherocylinder

radius r, camera intrinsics {K, D}
Output: LUS pose ξ

LUS

1 P = ExtractContour(SegmentLUS( I
LAP

) )
2 P = UndistortContour(P, D )
3 {ℓ1,Pℓ1} = RANSACLine(P) where Pℓ1 ⊂ P
4 P = RemovePoints(P,Pℓ1)
5 {ℓ2,Pℓ2} = RANSACLine(P) where Pℓ2 ⊂ P
6 P = RemovePoints(P,Pℓ2)
7 {ℓ+, ℓ−} = OutwardFromCylinder(ℓ1, ℓ2)
8 P = RemovePointsOutOfCylinder(P, ℓ+, ℓ−)
9 {cH,Ph} = RANSACHemisphere(P, ℓ+, ℓ−,K, r)

10 cu = ComputeCylinderDirection(ℓ+, ℓ−,K)
11 ξ

LUS
= [ cH⊤, cu⊤ ]⊤

accelerates computation. More explicitly, line 3 fits an image
line to set P and classifies the line’s consensus set as one
of the cylinder edges. Line 4 removes the line’s points from
P . Line 5 fits a second image line to the updated set P
and classifies the line’s consensus set as the second cylinder
edge. Line 6 removes the line’s points from P . Line 7 orients
the fitted image lines outward from the cylinder silhouette.
Line 8 removes the contour points outside of the cylinder’s
silhouette. Line 9 finds a consensus set of the hemisphere
silhouette using the 2-point solution from Algorithm 1 and
terminates with the least-squares n-point solution on the
consensus set. Line 10 computes the cylinder’s direction
vector cu from the cylinder’s silhouette lines, choosing its
orientation as shown in figure 1. Line 11 assembles the pose.

IV. EXPERIMENTAL RESULTS

We report a quantitative sensitivity analysis of LUP on
simulated data and then qualitative results on five surgeries.

A. Sensitivity Analysis

We use Monte Carlo simulation. We first create a set
of ground-truth LUS poses and generate their occluding
contours given calibration parameters of a real laparoscope

(image size of 1920×1080 and focal length of 1235 pixels),
and we perturb the contours with several pre-generated noise
schemes. We then estimate the LUS probe pose from the
perturbed data. Finally, we measure the difference between
the estimated and ground-truth poses.

1) Perturbation: The inputs to Algorithm 1 are two lines
and tip pixels. We perturb these inputs by adding noise
drawn from a distribution formed from the manual and neural
network segmentations of real laparoscopic images.

For the line noise distribution, we fit lines to the manual
segmentation and compare them to lines fitted on the neural
network segmentation. We first represent these lines by their
backprojected plane normal vector, which we express in
spherical coordinates under the ISO 80000-2:2019 conven-
tion. The error thus appears on the spherical coordinates
θ and ϕ. Finally, we observe that the noise PDF is well
approximated by zero-mean Gaussian distributions with σ =
1.5 × 10−4 radians for θ and σ = 1.2 × 10−3 radians
for ϕ. For tip pixel noise distribution, we take a similar
approach. First, we find the inlier pixels of the hemisphere
for the manual and the neural network segmentations. From
the inliers of the manual segmentation, we project the
reconstructed hemisphere onto the image, forming an ellipse.
Finally, we compute the Euclidean distance between the
inliers of the neural network segmentation and the ellipse
to form the error set. Even though the first two moments
of the error distribution are µ = 3 pixels and σ = 2.5
pixels, the distribution is not Gaussian. Therefore, we keep
the samples to form a non-parametric noise distribution. As
the generated noise is obtained from improper segmentation,
it is overestimated and we expect to have a lower noise with
proper segmentation.

2) Error Metrics: We measure the estimation error with 5
metrics for the estimated 5DoF LUS pose. First, we define a
reference plane formed by the camera center and the axis of
the LUS head cylinder. The plane normal is denoted by m.
We then define an orthonormal coordinate frame with axes
(m,h,v) where v = m × h and h as in figure 1. For the
hemisphere position error, we name the projected error onto
m as Out-of-Plane, onto h as In-Plane Depth, and onto v as
In-Plane Lateral. We also quantify the LUS head cylinder’s
axis direction errors in this orthonormal coordinate frame.
We define Out-of-Plane and In-Plane errors as the angles
between the estimated cylinder axis of the LUS head and
the hv-plane and um-plane, respectively.

3) Results: We first investigate the sensitivity in LUS head
orientation. We have simulated the LUS tip at the image
center and 10 cm away from the laparoscope and set the
LUS head to rotate around the y-axis of the laparoscope,
with the conventional camera coordinate system shown in
figure 2. For each orientation, the Monte Carlo simulation
is run 10, 000 times and noise is applied. In each iteration,
the ellipse from the hemisphere LUS tip is uniformly divided
into 50 points, and 10 of them are randomly selected. In real
data, the average number of inliers is around 30 points. The
results are shown in figure 3, indicating that the errors on
the estimated LUS head direction and the out-of-plane errors
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Fig. 2. LUP estimated the probe’s pose successfully from a single laparoscopic liver surgery image. LUP also classified the contour points as the hemisphere
(orange), the cylinder (blue and red), and the outliers (green). The forward projection of the LUS head model onto the image plane yields the rmse of
1.18 pixels with respect to the classified contour points. This rmse conforms to the chosen standard deviation σ = 1.25 pixels of a zero mean Gaussian
measurement error model considered in the formation of the consensus sets of the robust pose estimation algorithm.

Fig. 3. Mean absolute errors and standard deviations versus LUS head’s pitch in the laparoscope coordinate frame. The rotation axis indicates the angle
between the LUS and the xy plane of the laparoscope. The magenta-shaded regions show the LUS head pitch observed in the accompanying video.

on the estimated hemisphere position are negligible. The in-
plane lateral errors on the estimated hemisphere position are
sub-millimetric. The in-plane depth errors on the estimated
hemisphere position are higher and increase with higher LUS
head pitch. For a robotic surgery where both the laparoscope
and LUS are held by the robot, figure 3 suggest relative
pose constraint which could further improve the accuracy of
LUP. The next analysis varies the depth of the LUS tip, as
varying other orientations of the LUS does not provide new
cases. From the hemisphere position parameters, depth has
the strongest effect on estimation. Figure 4 shows varying
depths of LUS in a practical range of laparoscopic surgery.
To run the relevant simulation, parameters are similar to
the former test, and the error is averaged over all pitch
values as a random variable. As observed, the uncertainty
of in-plane depth and in-plane lateral components of the
hemisphere position increases with depth. The next analysis

is the same as the first analysis in figure 3, except that
the noise is multiplied with a varying gain. The results are
shown in figure 5 which are averaged over the different
pitch values. We observe that the accuracy of LUP scales
linearly. As the final analysis, we evaluate the accuracy of
hemisphere position estimation with respect to the number
of inliers from the hemisphere silhouette and compare it with
the recent method [28]. As observed in figure 6, a smaller
number of inliers provides a larger error but beyond 12
inliers, there is no strong enhancement. Compared to [28],
LUP’s hemisphere position reconstruction outperforms in the
minimum number of required points and accuracy.

B. Experiments with Clinical Data

We applied LUP on laparoscopic images from 5 different
liver surgeries. Figures 2 and 7 show qualitative LUP results.
We observe that the projected LUS head model from the



Fig. 4. LUP’s accuracy versus depths. Fig. 5. LUP’s accuracy versus noise levels. Fig. 6. LUP and [28] hemisphere reconstructions
versus number of inliers in hemisphere silhouette.

Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

Fig. 7. Forward projections of the LUS head model onto the five different surgery images from their estimated poses by LUP.

estimated LUS poses yields visually perfect alignments with
the input images. In this experiment, LUP runs at 10 fps (65
ms for image segmentation and contour extraction, and 35
ms for pose estimation). This is fast enough considering that
the LUS probe moves slowly in search of the tumor.

C. The 6th DoF Estimation and AR Application
Most LUS probes have 4-way (i.e., left, right, up and

down) articulation for the transducer head. We make the
observation that the shaft axis and the transducer head
axis of the LUS probe form a plane ΠL, when only an up-
or-down displacement is applied on the 4-way articulation.
In such a LUS probe posture, by construction, the head
transducer’s imaging plane ΠL overlaps the plane ΠL. It
follows that, given the LUS pose by LUP and the LUS shaft’s
cylinder axis direction in the laparoscope coordinate frame,
we can estimate the pose of the LUS imaging plane cΠL.
Any of the following scenarios allows us to recover the LUS
shaft’s cylinder axis direction: scenario-(i) when the LUS
shaft is also visible in the laparoscopic image; or scenario-
(ii) when both the LUS and the laparoscope are controlled by
robots providing their relative pose. We exploit scenario-(i)
on one of the liver laparoscopic images to showcase an AR
application using standard LUS calibration [8] in figure 8.
We name it LARLUS (laparoscopic augmented reality from
laparoscopic ultrasound). LARLUS augments the LUS image
on the laparoscopic image to reveal the subsurface tumors.

V. CONCLUSION

We have proposed LUP, the first LUS pose method which
works from a standard laparoscopic image, free of markers,

extra sensors, and (re)initialization. LUP is robust, accurate,
and fast, as shown from numerous experiments, with pose
errors lower than 1 cm and an unoptimized runtime of 10
fps. It thus forms an essential tool to facilitate robotic and
AR-based surgical applications. We have built LARLUS, an
AR-based guidance application, using LUP, which shows the
subsurface tumors on the laparoscopic images directly. As
future work, we will (i) improve LUP segmentation step in
the presence of multiple tools, (ii) build a LUS pose tracking
algorithm by imposing new temporal constraints on LUP’s
outputs, and (iii) develop RobUS2T (robotically-controlled
LUS probe for tumor tracking) for automatic tumor searching
and tracking with multimodal visual feedback.

Fig. 8. An instance of LARLUS output. The LUS image is augmented on
the laparoscopic image with the manually segmented bounding ellipses of
tumors. The original LUS image is also overlaid on the top-right corner.
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